TensorFlow案例学习:简单的音频识别

前言

以下内容均来源于官方教程:简单的音频识别:识别关键字

音频识别

下载数据集

下载地址:http://storage.googleapis.com/download.tensorflow.org/data/mini_speech_commands.zip

可以直接浏览器访问下载。
在这里插入图片描述
下载完成后将其解压到项目里,从文件夹里可以看到有8个子文件夹,文件夹的名称就是8个语音命令。
在这里插入图片描述
注意:我们只需要mini_speech_commands文件夹,其他的不需要
在这里插入图片描述

加载数据集

# 加载训练数据集、验证集
train_ds, val_ds = tf.keras.utils.audio_dataset_from_directory(directory='./data/mini_speech_commands',  # 数据集路径batch_size=64,  # 批次validation_split=0.2,  # 验证集占数据集的20%seed=0,  # 指定随机生成数据集的种子# 每个样本的输出序列长度。音频剪辑在 1kHz 时为 16 秒或更短。将较短的填充到正好 1 秒(并且会修剪较长的填充),以便可以轻松批量处理output_sequence_length=16000,subset='both'  # 训练集和验证集两者同时使用
)

获取类别

# 获取命令的类别
label_names = np.array(train_ds.class_names)
print("命令类别:", label_names)

在这里插入图片描述
刚好与子文件的名称和顺序一致。

维度压缩

文档中说,此数据集仅包含单声道音频,因此需要 对输入的音频数据进行维度压缩

  • 单声道(mono)音频只有一个声道。这意味着所有的音频信号被混合到一个通道中,不区分左右声道。在单声道音频中,所有的声音通过单个扬声器播放。单声道音频适用于大部分音频应用,如电话通信、语音录音等。

  • 多声道(stereo)音频有两个声道,左声道(left channel)和右声道(right channel)。通过左右声道的不同信号,可以在音频空间上创建立体声效果。多声道音频提供了更加丰富的音频体验,可以更好地模拟现实环境中的声音分布。常见的应用包括音乐播放、电影声音、游戏音效等。

def squeeze(audio,labels):audio = tf.squeeze(audio,axis=-1)return audio,labelstrain_ds = train_ds.map(squeeze,tf.data.AUTOTUNE)
val_ds = val_ds.map(squeeze,tf.data.AUTOTUNE)

拆分验证集
这块没太看明白在干嘛

test_ds = val_ds.shard(num_shards=2, index=0)
val_ds = val_ds.shard(num_shards=2, index=1)
for example_audio, example_labels in train_ds.take(1):print(example_audio.shape)print(example_labels.shape)

绘制音频波形
这块只是让我们可视化的观察音频的波形,这块后面可以注释掉

plt.figure(figsize=(8, 5))
rows = 3
cols = 3
n = rows * cols
for i in range(n):plt.subplot(rows, cols, i+1)audio_signal = example_audio[i]plt.plot(audio_signal)plt.title(label_names[example_labels[i]])plt.yticks(np.arange(-1.2, 1.2, 0.2))plt.ylim([-1.1, 1.1])
plt.tight_layout()
plt.show()

在这里插入图片描述

将波形转换为频谱图

将波形转换为频谱图的目的是为了更好地分析和理解音频信号。

波形是时域上的表示,它展示了音频信号在时间轴上的变化。然而,频谱图是频域上的表示,它将音频信号分解为不同的频率成分,并显示每个频率成分的能量或振幅。

通过将波形转换为频谱图,我们可以更清晰地看到音频信号中哪些频率成分对于特定的声音或事件是重要的。这对于音频处理任务(如语音识别、音频分类、音频分割等)以及音频信号理解和分析非常有帮助。

def get_spectrogram(waveform):spectrogram = tf.signal.stft(waveform, frame_length=255, frame_step=128)spectrogram = tf.abs(spectrogram)spectrogram = spectrogram[..., tf.newaxis]return spectrogram

浏览数据
打印一个示例的张量化波形和相应频谱图的形状,并播放原始音频:

for i in range(3):label = label_names[example_labels[i]]waveform = example_audio[i]spectrogram = get_spectrogram(waveform)print('Label:', label)print('Waveform shape:', waveform.shape)print('Spectrogram shape:', spectrogram.shape)print('Audio playback')display.display(display.Audio(waveform, rate=16000))

从音频数据集创建频谱图数据集

# 从音频数据集创建频谱图数据集
def make_spec_ds(ds):return ds.map(map_func=lambda audio,label: (get_spectrogram(audio), label),num_parallel_calls=tf.data.AUTOTUNE)train_spectrogram_ds = make_spec_ds(train_ds)
val_spectrogram_ds = make_spec_ds(val_ds)
test_spectrogram_ds = make_spec_ds(test_ds)

减少训练模型时的读取延迟

train_spectrogram_ds = train_spectrogram_ds.cache().shuffle(10000).prefetch(tf.data.AUTOTUNE)
val_spectrogram_ds = val_spectrogram_ds.cache().prefetch(tf.data.AUTOTUNE)
test_spectrogram_ds = test_spectrogram_ds.cache().prefetch(tf.data.AUTOTUNE)

使用卷积神经网络创建并训练模型

# 使用卷积神经网络创建模型
input_shape = example_spectrograms.shape[1:]
print('Input shape:', input_shape)
num_labels = len(label_names)
norm_layer = tf.keras.layers.Normalization()  # 创建规范化层,便于更好的进行模型训练和推断
norm_layer.adapt(data=train_spectrogram_ds.map(map_func=lambda spec, label: spec))model = tf.keras.models.Sequential([tf.keras.layers.Input(shape=input_shape),tf.keras.layers.Resizing(32, 32),norm_layer,tf.keras.layers.Conv2D(32, 3, activation='relu'),tf.keras.layers.Conv2D(64, 3, activation='relu'),tf.keras.layers.MaxPool2D(),tf.keras.layers.Dropout(0.25),tf.keras.layers.Flatten(),tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dropout(0.5),tf.keras.layers.Dense(num_labels),
])model.summary()# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(),  # 优化器loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),  # 损失函数metrics=['accuracy']  # 准确率作为评估标准
)# 训练模型,并记录训练的日志
history = model.fit(train_spectrogram_ds,validation_data=val_spectrogram_ds,epochs=10,callbacks=tf.keras.callbacks.EarlyStopping(verbose=1, patience=2),
)

在这里插入图片描述
评估性能

model.evaluate(test_spectrogram_ds, return_dict=True)

导出模型

class ExportModel(tf.Module):def __init__(self, model):self.model = model# Accept either a string-filename or a batch of waveforms.# YOu could add additional signatures for a single wave, or a ragged-batch.self.__call__.get_concrete_function(x=tf.TensorSpec(shape=(), dtype=tf.string))self.__call__.get_concrete_function(x=tf.TensorSpec(shape=[None, 16000], dtype=tf.float32))@tf.functiondef __call__(self, x):# If they pass a string, load the file and decode it.if x.dtype == tf.string:x = tf.io.read_file(x)x, _ = tf.audio.decode_wav(x, desired_channels=1, desired_samples=16000,)x = tf.squeeze(x, axis=-1)x = x[tf.newaxis, :]x = get_spectrogram(x)result = self.model(x, training=False)class_ids = tf.argmax(result, axis=-1)class_names = tf.gather(label_names, class_ids)return {'predictions': result,'class_ids': class_ids,'class_names': class_names}export = ExportModel(model)
export(tf.constant('./data/mini_speech_commands/no/012c8314_nohash_0.wav'))tf.saved_model.save(export, "saved")

下面是保存的模型
在这里插入图片描述
完整代码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from IPython import display# 加载训练数据集、验证集
train_ds, val_ds = tf.keras.utils.audio_dataset_from_directory(directory='./data/mini_speech_commands',  # 数据集路径batch_size=64,  # 批次validation_split=0.2,  # 验证集占数据集的20%seed=0,  # 指定随机生成数据集的种子# 每个样本的输出序列长度。音频剪辑在 1kHz 时为 16 秒或更短。将较短的填充到正好 1 秒(并且会修剪较长的填充),以便可以轻松批量处理output_sequence_length=16000,subset='both'  # 训练集和验证集两者同时使用
)# 获取命令的类别
label_names = np.array(train_ds.class_names)
print("命令类别:", label_names)# 输入数据压缩def squeeze(audio, labels):audio = tf.squeeze(audio, axis=-1)return audio, labelstrain_ds = train_ds.map(squeeze, tf.data.AUTOTUNE)
val_ds = val_ds.map(squeeze, tf.data.AUTOTUNE)# 拆分验证集
test_ds = val_ds.shard(num_shards=2, index=0)
val_ds = val_ds.shard(num_shards=2, index=1)for example_audio, example_labels in train_ds.take(1):print(example_audio.shape)print(example_labels.shape)# 绘制音频波形
# plt.figure(figsize=(8, 5))
# rows = 3
# cols = 3
# n = rows * cols
# for i in range(n):
#     plt.subplot(rows, cols, i+1)
#     audio_signal = example_audio[i]
#     plt.plot(audio_signal)
#     plt.title(label_names[example_labels[i]])
#     plt.yticks(np.arange(-1.2, 1.2, 0.2))
#     plt.ylim([-1.1, 1.1])
# plt.tight_layout()
# plt.show()# 将波形转换为频谱图
def get_spectrogram(waveform):spectrogram = tf.signal.stft(waveform, frame_length=255, frame_step=128)spectrogram = tf.abs(spectrogram)spectrogram = spectrogram[..., tf.newaxis]return spectrogram# 浏览数据
for i in range(3):label = label_names[example_labels[i]]waveform = example_audio[i]spectrogram = get_spectrogram(waveform)print('Label:', label)print('Waveform shape:', waveform.shape)print('Spectrogram shape:', spectrogram.shape)print('Audio playback')display.display(display.Audio(waveform, rate=16000))# 从音频数据集创建频谱图数据集def make_spec_ds(ds):return ds.map(map_func=lambda audio, label: (get_spectrogram(audio), label),num_parallel_calls=tf.data.AUTOTUNE)train_spectrogram_ds = make_spec_ds(train_ds)
val_spectrogram_ds = make_spec_ds(val_ds)
test_spectrogram_ds = make_spec_ds(test_ds)# 检查数据集的不同示例的频谱图
for example_spectrograms, example_spect_labels in train_spectrogram_ds.take(1):break# 减少训练模型时的读取延迟
train_spectrogram_ds = train_spectrogram_ds.cache().shuffle(10000).prefetch(tf.data.AUTOTUNE)
val_spectrogram_ds = val_spectrogram_ds.cache().prefetch(tf.data.AUTOTUNE)
test_spectrogram_ds = test_spectrogram_ds.cache().prefetch(tf.data.AUTOTUNE)# 使用卷积神经网络创建模型
input_shape = example_spectrograms.shape[1:]
print('Input shape:', input_shape)
num_labels = len(label_names)
norm_layer = tf.keras.layers.Normalization()  # 创建规范化层,便于更好的进行模型训练和推断
norm_layer.adapt(data=train_spectrogram_ds.map(map_func=lambda spec, label: spec))model = tf.keras.models.Sequential([tf.keras.layers.Input(shape=input_shape),tf.keras.layers.Resizing(32, 32),norm_layer,tf.keras.layers.Conv2D(32, 3, activation='relu'),tf.keras.layers.Conv2D(64, 3, activation='relu'),tf.keras.layers.MaxPool2D(),tf.keras.layers.Dropout(0.25),tf.keras.layers.Flatten(),tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dropout(0.5),tf.keras.layers.Dense(num_labels),
])model.summary()# 编译模型
model.compile(optimizer=tf.keras.optimizers.Adam(),  # 优化器loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),  # 损失函数metrics=['accuracy']  # 准确率作为评估标准
)# 训练模型,并记录训练的日志
history = model.fit(train_spectrogram_ds,validation_data=val_spectrogram_ds,epochs=10,callbacks=tf.keras.callbacks.EarlyStopping(verbose=1, patience=2),
)# 评估性能
model.evaluate(test_spectrogram_ds, return_dict=True)# 导出模型class ExportModel(tf.Module):def __init__(self, model):self.model = modelself.__call__.get_concrete_function(x=tf.TensorSpec(shape=(), dtype=tf.string))self.__call__.get_concrete_function(x=tf.TensorSpec(shape=[None, 16000], dtype=tf.float32))@tf.functiondef __call__(self, x):if x.dtype == tf.string:x = tf.io.read_file(x)x, _ = tf.audio.decode_wav(x, desired_channels=1, desired_samples=16000,)x = tf.squeeze(x, axis=-1)x = x[tf.newaxis, :]x = get_spectrogram(x)result = self.model(x, training=False)class_ids = tf.argmax(result, axis=-1)class_names = tf.gather(label_names, class_ids)return {'predictions': result,'class_ids': class_ids,'class_names': class_names}export = ExportModel(model)
export(tf.constant('./data/mini_speech_commands/no/012c8314_nohash_0.wav'))tf.saved_model.save(export, "saved")

加载使用导出的模型

使用模型预测down的音频

import tensorflow as tf# 直接加载模型的目录
new_model = tf.saved_model.load("./saved")
res = new_model('./data/mini_speech_commands/down/004ae714_nohash_0.wav')
print("结果:",res)class_names = ['down', 'go', 'left', 'no', 'right', 'stop', 'up', 'yes']
class_index = res['class_ids'].numpy()[0]
class_name = class_names[class_index]
print("类别名称:", class_name)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/180011.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

路由器基础(九):防火墙基础

防火墙 (Fire Wall) 是网络关联的重要设备,用于控制网络之间的通信。外部网络用户的访问必须先经过安全策略过滤,而内部网络用户对外部网络的访问则无须过滤。现在的防火墙还具有隔离网络、提供代理服务、流量控制等功能。 一、三种防火墙技术 常见的…

医疗数据可视化大屏:重构医疗决策的未来

医疗行业一直是信息密集型领域之一,它的复杂性不仅在于患者病历和医疗数据的海量积累,还包括了病情诊断、医疗资源分配、病患治疗等多层次的挑战。随着信息技术的不断发展,医疗数据可视化大屏成为了一种创新性的工具,它为医疗管理…

openGauss学习笔记-113 openGauss 数据库管理-设置安全策略-设置帐户安全策略

文章目录 openGauss学习笔记-113 openGauss 数据库管理-设置安全策略-设置帐户安全策略113.1 背景信息113.2 自动锁定和解锁帐户113.2.1 配置failed_login_attempts参数113.2.2 配置password_lock_time参数 113.3 手动锁定和解锁帐户113.4 删除不再使用的帐户 openGauss学习笔记…

UI设计一定不能错过的4款常用工具

虽然设计审美很重要,但软件只是一种工具,但就像走楼梯和坐电梯到达顶层一样,电梯的效率显然更高,易于使用的设计工具也是如此。让我们了解一下UI设计的主流软件,以及如何选择合适的设计软件。 即时设计 软件介绍 即…

怎样去除视频中的杂音,保留人声部分?

怎样去除视频中的杂音,保留人声部分?这个简单嘛!两种办法可以搞定:一是进行音频降噪,把无用的杂音消除掉;二是提取人声,将要保留的人声片段提取出来。 这就将两种实用的办公都分享出来&#xf…

Ubuntu18.04 下PCL的卸载与安装

目录 一、卸载有问题的PCL1.7 二、编译&&安装PCL1.8.1 2.1、安装PCL依赖 2.2、编译VTK 2.3、编译PCL源码 三、 总结 写这篇博客时,本文方法已经在笔记本Ubuntu和VM虚拟机成功安装PCL1.8.1,并且通过测试。 下文方法同样适用于ubuntu18.04。…

java spring boot 注解、接口和问题解决方法(持续更新)

注解 RestController 是SpringMVC框架中的一个注解,它结合了Controller和ResponseBody两个注解的功能,用于标记一个类或者方法,表示该类或方法用于处理HTTP请求,并将响应的结果直接返回给客户端,而不需要进行视图渲染…

OkHttp库爬取百度云视频详细步骤

以下是使用OkHttp库的Kotlin爬虫程序,该爬虫用于爬取百度云的视频。 首先,我们需要导入OkHttp库和Kotlin库。import okhttp3.OkHttpClient和import kotlin.jvm.JVM。 import okhttp3.OkHttpClient import kotlin.jvm.JVM然后,我们需要创建一…

VUE2和VUE3思维导图知识体系总结大对比

VUE2知识体系 VUE3知识体系 思维导图原件下载地址

firefox浏览器添加自定义搜索引擎方法

firefox浏览器添加自定义搜索引擎方法 1.在地址栏添加搜索引擎2.Mycroft Project 搜索引擎附加组件3.通过扩展插件添加自定义搜索引擎 Firefox这货居然不支持直接网址%s的搜索引擎定义方式,以下是添加方法。 firefox国际版119.0 1.在地址栏添加搜索引擎 &#xff…

mybatis-plus技巧--动态表名-多语句-拼接sql--关于mybatis的mysql分页查询总数的优化思考

文章目录 动态表名xml表名填充表名拦截器每天按统计每次设置 多语句操作forEach动态拼接 参数构建java进行拼接sqlmysql分页查询总数count不要使用count(常数),count(列名)代替count(*)自己计数 SQL_CALC_FOUND_ROWSxm…

压缩软件 7-Zip VS WinZips?

7-zip在联想应用商店给强烈推荐? 要说它好用还行,但每次压缩都显示网络连接失败等异常广告信息。 相反好用的7-ZIP必须鼠标点击右键点击更多才能够看到,这次更新体验也太差了吧? 用户放在第一位? 要不是更新后一直推…

【word技巧】ABCD选项如何对齐?

使用word文件制作试卷,如何将ABCD选项全部设置对齐?除了一直按空格或者Tab键以外,还有其他方法吗?今天分享如何将ABCD选项对齐。 首先,我们打开【替换和查找】,在查找内容输入空格,然后点击全部…

Required String parameter ‘name‘ is not present

[org.springframework.web.bind.MissingServletRequestParameterException: Required String parameter name is not present] 服务端有参数name,客户端没有传上来

掌握RESTful API:规范与设计详解

前言 RAML (RESTful API Modeling Language) 和 OAS (OpenAPI Specification) 都是用于描述和定义 RESTful API 的规范。它们分别提供了不同的功能和优势。 RAML(RESTful API Modeling Language): RAML简介 RAML(RESTful API M…

Qt中正确的设置窗体的背景图片的几种方式

Qt中正确的设置窗体的背景图片的几种方式 QLabel加载图片方式之一Chapter1 Qt中正确的设置窗体的背景图片的几种方式一、利用styleSheet设置窗体的背景图片 Chapter2 Qt的主窗口背景设置方法一:最简单的方式是通过ui界面来设置,例如设置背景图片方法二 &…

开发环境配置之Linux安装golang

Linux安装golang 目录 1. 下载Go发行版2. 配置工作空间3. 版本升级 1. 下载Go发行版 从官方地址:https://golang.org/dl/ 上下载合适的 二进制发行版 可以使用wget、curl等工具下载具体的go的发行版。 wget https://go.dev/dl/go1.21.3.linux-amd64.tar.gz接着…

edge浏览器的隐藏功能

1. edge://version 查看版本信息 2. edge://flags 特性界面 具体到某一特性:edge://flags/#overlay-scrollbars 3. edge://settings设置界面 详情可参考chrome: 4. edge://extensions 扩展程序页面 5. edge://net-internals 网络事件信息 6. edge://component…

4 sql语法基础

1、DISTINCT 相同值只会出现一次。它作用于所有列,也就是说所有列的值都相同才算相同。 2、LIMIT 限制返回的行数。可以有两个参数,第一个参数为起始行,从 0 开始;第二个参数为返回的总行数。 返回前 5 行: SELECT * FROM myt…

绝地求生msvcp140.dll丢失报错怎么办,这四个方法都可以解决

在回答这个问题之前,我们先来了解一下什么是msvcp140.dll。msvcp140.dll是微软Visual C 2015 Redistributable的一个组件,它包含了许多运行库文件,用于支持各种应用程序的正常运行。当你在玩《绝地求生》(俗称“吃鸡”&#xff09…