python图像处理 ——几种图像增强技术

图像处理 ——几种图像增强技术

  • 前言
  • 一、几种图像增强技术
    • 1.直方图均衡化
    • 2.直方图适应均衡化
    • 3.灰度变换
    • 4.同态滤波
    • 5.对比拉伸
    • 6.对数变换
    • 7.幂律变换(伽马变换)

前言

图像增强是指通过各种算法和技术,改善或提高数字图像的质量、清晰度、对比度、亮度、颜色等方面的处理过程。它可以通过调整图像的像素值来改善图像的可视化效果,使图像更易于观察和分析。图像增强广泛应用于医学影像诊断、监控、遥感、数字图像处理等领域。常见的图像增强方法包括灰度拉伸、直方图均衡化、滤波、锐化、颜色增强等。

一、几种图像增强技术

1.直方图均衡化

想象一下如果一副图像中的大多是像素点的像素值都集中在一个像素值范围之内会怎样呢?例如,如果一幅图片整体很亮,那所有的像素值应该都会很高。但是一副高质量的图像的像素值分布应该很广泛。所以你应该把它的直方图做一个横向拉伸(如下图),这就是直方图均衡化要做的事情。通常情况下这种操作会改善图像的对比度。

在这里插入图片描述
代码如下

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
import numpy as np
img = cv2.imread('gray.png', 0)
#=============================直方图均衡化==========================
equ = cv2.equalizeHist(img)

2.直方图适应均衡化

直方图适应均衡化(CLAHE)是数字图像处理中用于增强图像对比度的一种技术。它可以将原始图像中局部对比度较低的区域的像素值映射到一个更广的范围内,从而提高图像的整体对比度。

CLAHE算法可以有效地增强图像的对比度,尤其适用于图像中存在大范围灰度变化的情况下。但是,CLAHE算法也存在一些问题,如对于纹理复杂的图像(如自然场景图片)可能会产生可见的块状伪影等。因此在实际应用中还需要结合其他技术进行综合处理。

代码如下

#=============================直方图适应均衡化==========================
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(16,16))
"""
该函数包含以下参数:
clipLimit: 用于控制直方图均衡化的局部对比度,值越高,越容易出现失真和噪声。建议值为2-4,若使用默认值0则表示自动计算。
tileGridSize: 表示每个块的大小,推荐16x16。
tileGridSize.width: 块的宽度。
tileGridSize.height: 块的高度。
函数返回一个CLAHE对象,可以通过该对象调用apply函数来实现直方图均衡化。
"""
cl1 = clahe.apply(img)

3.灰度变换

灰度变换的基本思想是将灰度值在某个范围内的像素值通过某种函数关系映射到另一个范围内的像素值。常见的灰度变换函数有对数变换、幂变换、反转变换等。具体的变换函数的选择取决于实际应用中需要增强的目标属性。
代码如下

#=============================灰度变换==========================
# 通过将像素值映射到新的范围来增强图像的灰度
min_gray = 0  # 新的最小灰度值
max_gray = 255  # 新的最大灰度值
gray_img_enhanced = cv2.convertScaleAbs(img, alpha=(max_gray-min_gray)/255, beta=min_gray)

4.同态滤波

同态滤波是一种常用的图像增强技术,它能够增强图像的低频信息,同时抑制高频信息。同态滤波的本质是利用了信号的对数域与频率域之间的对应关系,将原图像分解成低频与高频两部分,对低频进行增强,对高频进行抑制,然后再将两部分合并起来得到增强后的图像。

同态滤波可以用以下公式表示:

H ( u , v ) = γ H − γ L ( 1 − e − c ( D 2 ( u , v ) D 0 2 ) ) H(u,v) = \gamma_H - \gamma_L(1-e^{-c(\frac{D^2(u,v)}{D_0^2})}) H(u,v)=γHγL(1ec(D02D2(u,v)))

其中, H ( u , v ) H(u,v) H(u,v) 是频域中的同态滤波函数, D ( u , v ) D(u,v) D(u,v) 表示频率域中点 ( u , v ) (u,v) (u,v) 到图像中心的距离, D 0 D_0 D0 是频率域中的截止频率, c c c 是控制增益的参数, γ H \gamma_H γH γ L \gamma_L γL 分别是高频增益和低频衰减系数。

同态滤波的具体步骤如下:

1.将原图像转换到对数域。
2.对转换后的图像进行离散傅里叶变换,得到频率域的图像。
3.根据上述公式计算同态滤波函数 H ( u , v ) H(u,v) H(u,v)
4.将 H ( u , v ) H(u,v) H(u,v) 与频率域的图像相乘,得到增强后的频率域图像。
5.对增强后的频率域图像进行反傅里叶变换,得到增强后的图像。

同态滤波技术主要应用于图像的增强、去噪、颜色校正、图像分割等领域。它可以有效地增强低光度图像、消除背景噪声等问题,并且能够适用于各种类型的图像,具有广泛的应用前景。
代码如下

#=============================同态滤波==========================
gray = cv2.bilateralFilter(img, 15, 75, 75)
# 对数变换和傅里叶变换
H, W = gray.shape
gray_log = np.log(gray+1)
gray_fft = np.fft.fft2(gray_log)
# 设置同态滤波器参数
c, d, gamma_L, gamma_H, gamma_C = 1, 10, 0.2, 2.5, 1
# 构造同态滤波器
u, v = np.meshgrid(range(W), range(H))
Duv = np.sqrt((u-W/2)**2 + (v-H/2)**2)
Huv = (gamma_H - gamma_L) * (1 - np.exp(-c*(Duv**2)/(d**2))) + gamma_L
Huv = Huv * (1 - gamma_C) + gamma_C
# 进行频域滤波
gray_fft_filtered = Huv * gray_fft
gray_filtered = np.fft.ifft2(gray_fft_filtered)
gray_filtered = np.exp(np.real(gray_filtered))-1
# 转为uint8类型
gray_filtered = cv2.normalize(gray_filtered, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U)

5.对比拉伸

对比拉伸称为归一化,用于拉伸强度值的范围以提高图像的对比度。Python/OpenCV 可以通过使用 min_max 归一化的 cv2.normalize() 方法进行对比度拉伸。
代码如下

#=============================对比拉伸==========================
norm_img1 = cv2.normalize(img,None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
# scale to uint8
norm_img1 = (255 * norm_img1).astype(np.uint8)

6.对数变换

对数变换用于将图像的每个像素值替换为其对数值,以增强较低强度值的对比度。它有助于缩小较亮的像素值范围并扩大暗像素。当需要减少图像的偏度分布以获得更好的解释时,可以应用此转换。
代买如下

#=============================对数变换==========================
# Apply log transformation method
c = 255 / np.log(1 + np.max(img))
log_image = c * (np.log(img + 1))
# Specify the data type so that
# float value will be converted to int
log_image = np.array(log_image, dtype=np.uint8)

7.幂律变换(伽马变换)

幂律变换用于从较亮图像到较暗图像突出显示对象,可以通过以下表达式使用:s = c × r^ γ ,其中 s 和 r 分别是输出和输入图像的像素值,c 是常数值,γ称为伽马值。为了减少不同强度值的计算机显示器显示问题,在此转换中使用了不同的伽马值
代买如下

#=============================幂律变换(伽马变换)==========================
# Apply Gamma=0.4 on the normalised image and then multiply by scaling constant (For 8 bit, c=255)
gamma_point_eight = np.array(255 * (img / 255) ** 0.8, dtype='uint8')

在这里插入图片描述
希望你喜欢阅读这篇文章,希望它能帮助你了解不同类型的图像增强技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/181659.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UI自动化概念+Web自动化测试框架

1.UI自动化测试概念:我们先明确什么是UI UI,即(User Interface简称UI用户界面)是系统和用户之间进行交互和信息交换的媒介 UI自动化测试: Web自动化测试和移动自动化测试都属于UI自动化测试,UI自动化测试就是借助自动化工具对程序UI层进行自动化的测试 …

【算法|二分查找No.4】leetcode 852. 山脉数组的峰顶索引

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…

go-sync-mutex

Sync ​ Go 语言作为一个原生支持用户态进程(Goroutine)的语言,当提到并发编程、多线程编程时,往往都离不开锁这一概念。锁是一种并发编程中的同步原语(Synchronization Primitives),它能保证多…

python图像处理 ——图像分块

python图像处理 ——图像分块 前言一、分块与合并1.读取原始图像2.网格划分,将图像划分为m*n块3.网格合并 二、代码 前言 根据图像尺寸创建一个 ( m 1 ) ( n 1 ) 个均匀的网格顶点坐标,对于图像块来说每个图像块的左上角和右下角可以唯一确定一个图像…

0X02

web9 阐释一波密码&#xff0c;依然没有什么 发现&#xff0c;要不扫一下&#xff0c;或者看一看可不可以去爆破密码 就先扫了看看&#xff0c;发现robots.txt 访问看看,出现不允许被访问的目录 还是继续尝试访问看看 就可以下载源码&#xff0c;看看源码 <?php $fl…

【音视频 | Ogg】RFC3533 :Ogg封装格式版本 0(The Ogg Encapsulation Format Version 0)

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

双目视觉检测 KX02-SY1000型测宽仪 有效修正和消除距离变化对测量的影响

双目视觉检测的基本原理 利用相机测量宽度时&#xff0c;由于单个相机在成像时存在“近大远小”的现象&#xff0c;并且单靠摄入的图像无法知道被测物的距离&#xff0c;所以由被测物的跳动导致的被测物到工业相机之间距离变化&#xff0c;使测量精度难以提高。 因此测宽仪需…

React基础知识02

一、通过属性来传值&#xff08;props&#xff09; react中可以使用属性&#xff08;props&#xff09;可以传递给子组件&#xff0c;子组件可以使用这些属性值来控制其行为和呈现输出。 例子&#xff1a; // 1.1 父组件 import React, { useState } from react // 1.2引入子…

Rust编程基础之6大数据类型

1.Rust数据类型 在 Rust 中, 每一个值都属于某一个 数据类型&#xff08;data type&#xff09;, 这告诉 Rust 它被指定为何种数据&#xff0c;以便明确数据处理方式。我们将看到两类数据类型子集&#xff1a;标量&#xff08;scalar&#xff09;和复合&#xff08;compound&a…

多态 多继承的虚表深度剖析 (3)

&#x1f4af; 博客内容&#xff1a;多态 &#x1f600; 作  者&#xff1a;陈大大陈 &#x1f680; 个人简介&#xff1a;一个正在努力学技术的准C后端工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎私信&#xff01; &#x1f496; 欢迎大家&#xff1a;这里是CSD…

NLP之Bert多分类实现案例(数据获取与处理)

文章目录 1. 代码解读1.1 代码展示1.2 流程介绍1.3 debug的方式逐行介绍 3. 知识点 1. 代码解读 1.1 代码展示 import json import numpy as np from tqdm import tqdmbert_model "bert-base-chinese"from transformers import AutoTokenizertokenizer AutoToken…

Open3D(C++) 最小二乘拟合平面(间接平差法)

目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。 一、算法原理 1、原理概述 通过传统最小二乘法对点云数据进行平面拟合时,可将误差只归因于一个方向上,本文假设误差只存在于 Z Z

Monarch Mixer:一种性能比Transformer更强的网络架构

六年前&#xff0c;谷歌团队在arXiv上发表了革命性的论文《Attention is all you need》。作为一种优势的机器学习网络架构&#xff0c;Transformer技术迅速席卷全球。Transformer一直是现代基础模型背后的主力架构&#xff0c;并且在不同的应用程序中取得了令人印象深刻的成功…

tbh着色

在tbh中&#xff0c;着色之前&#xff0c;首先可以可以创建多个色板&#xff0c;如果不同角色颜色不一样&#xff0c;就可以创建多个色板&#xff0c;每一个色板代表的角色不同。 1、创建色板 有两种方式&#xff1a; 方法一&#xff1a;在颜色菜单中&#xff0c;点击左上角 …

SQL面试

#(1)请写出要查询员工J开头的名字其工号(EMPNO)及部门名称(DEPTNA)的 SQL语句SELECT e.emp,e.name,d.deptna FROM emp e left join dept d on d.deptno e.deptno where e.name like J%#(2)请写出要查询 Kevin 所在部门的部门代号(DEPTNO)及部门名称(DEPTNA)的 SQL 语句SELECT e…

D-Link管理系统默认账号密码

默认口令为 admin:admin 登陆成功 文笔生疏&#xff0c;措辞浅薄&#xff0c;望各位大佬不吝赐教&#xff0c;万分感谢。 免责声明&#xff1a;由于传播或利用此文所提供的信息、技术或方法而造成的任何直接或间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c; 文章…

【RabbitMQ】RabbitMQ 集群的搭建 —— 基于 Docker 搭建 RabbitMQ 的普通集群,镜像集群以及仲裁队列

文章目录 一、集群分类1.1 普通模式1.2 镜像模式1.3 仲裁队列 二、普通集群2.1 目标集群2.2 获取 Erlang Cookie2.3 集群配置2.4 启动集群2.5 测试集群 三、镜像模式3.1 镜像模式的特征3.2 镜像模式的配置3.2.1 exactly 模式3.2.2 all 模式3.2.3 nodes 模式 3.3 测试镜像模式 四…

使用lua-resty-request库编写爬虫IP实现数据抓取

目录 一、lua-resty-request库介绍 二、使用lua-resty-request库进行IP数据抓取 1、获取IP地址 2、设置请求 3、处理数据 三、代码实现 四、注意事项 五、总结 本文将深入探讨如何使用lua-resty-request库在爬虫程序中实现IP数据抓取。我们将首先介绍lua-resty-request…

windows自动登陆

新建文本粘贴下面代码&#xff0c;另存为注册表文件 Windows Registry Editor Version 5.00[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Driver Signing] "Policy"hex:00[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon]"DefaultUserN…

UI设计感蓝色商务数据后台网站模板源码

蓝色商务数据后台网站模板是一款适合网站模板下载。提示&#xff1a;本模板调用到谷歌字体库&#xff0c;可能会出现页面打开比较缓慢。 演示下载 qnziyw点cn/wysc/qdmb/20852点html