python图像处理 ——图像分块

python图像处理 ——图像分块

  • 前言
  • 一、分块与合并
    • 1.读取原始图像
    • 2.网格划分,将图像划分为m*n块
    • 3.网格合并
  • 二、代码

前言

根据图像尺寸创建一个 ( m + 1 ) × ( n + 1 ) 个均匀的网格顶点坐标,对于图像块来说每个图像块的左上角和右下角可以唯一确定一个图像块,这样就可以利用网格顶点坐标对原始图像进行裁剪。

一、分块与合并

1.读取原始图像

在这里插入图片描述

2.网格划分,将图像划分为m*n块

def split_image(image, num_blocks):height, width = image.shape[:2]block_size = int(min(height, width) / num_blocks)block_images = []for i in range(num_blocks):for j in range(num_blocks):x1, y1 = i * block_size, j * block_sizex2, y2 = x1 + block_size, y1 + block_sizeblock_image = image[x1:x2, y1:y2]block_images.append((i*num_blocks+j, block_image))return block_images

这段代码实现了将一个二维图像切分为多个块的功能。

函数名为 split_image,它有两个参数:image 为需要切分的图片,num_blocks 为需要切分的块数。

(1)通过 shape 属性获取图片的高度 height 和宽度 width。然后通过 min() 函数计算出一个块的大小 block_size,即取高度和宽度中较小值再除以块数。
(2)通过双重循环遍历所有块的位置,每次循环计算块的左上角 (x1, y1) 和右下角 (x2, y2) 的坐标,然后用 NumPy 的切片操作 image[x1:x2, y1:y2] 获取一个块的图像数据,并将其存入 block_images 列表中。
(3)最后返回切分好的块列表 block_images,以及原图片的高度和宽度。

3.网格合并

def merge_images(block_images, num_blocks):block_size = block_images[0].shape[0]image_size = block_size * num_blocksmerged_image = np.zeros((image_size, image_size, 3), dtype=np.uint8)for i in range(num_blocks):for j in range(num_blocks):x1, y1 = i * block_size, j * block_sizex2, y2 = x1 + block_size, y1 + block_sizemerged_image[x1:x2, y1:y2] = block_images[i * num_blocks + j]return merged_image

这段代码定义了一个名为merge_images的函数,该函数用于将多个图像块合并成一个完整的图像。

函数的参数block_images是一个包含多个图像块的列表,每个图像块都是一个二维数组,表示该块在完整图像中的位置和大小。参数num_blocks表示完整图像被分成多少个块。

(1)函数通过block_images[0].shape[0]获取第一个图像块的高度(或宽度),作为每个块的大小。然后,计算完整图像的大小,即 image_size = block_size * num_blocks。
(2)函数创建一个全黑的数组merged_image,用于存放合并后的完整图像。该数组的大小为(image_size, image_size, 3),其中3表示颜色通道数,dtype=np.uint8表示每个像素点使用8位无符号整数来表示。
(3)函数使用两个嵌套循环遍历所有的图像块,并计算出该块在完整图像中的位置。这里使用了变量i和j来表示当前处理的块的行和列索引,使用变量x1、y1、x2和y2来表示当前块在完整图像中的左上角和右下角位置。
(4)函数将当前块的像素值复制到merged_image数组的相应位置,完成了合并操作。最后返回合并后的完整图像数组。
在这里插入图片描述

二、代码

import cv2
import numpy as np
from matplotlib import pyplot as plt
def split_image(image, num_blocks):height, width = image.shape[:2]block_size = int(min(height, width) / num_blocks)block_images = []for i in range(num_blocks):for j in range(num_blocks):x1, y1 = i * block_size, j * block_sizex2, y2 = x1 + block_size, y1 + block_sizeblock_image = image[x1:x2, y1:y2]block_images.append(block_image)return block_images, height, widthdef merge_images(block_images, num_blocks):block_size = block_images[0].shape[0]image_size = block_size * num_blocksmerged_image = np.zeros((image_size, image_size, 3), dtype=np.uint8)for i in range(num_blocks):for j in range(num_blocks):x1, y1 = i * block_size, j * block_sizex2, y2 = x1 + block_size, y1 + block_sizemerged_image[x1:x2, y1:y2] = block_images[i * num_blocks + j]return merged_imageimage = cv2.imread("pepper.png")
num_blocks = 4
block_images, rows, cols = split_image(image, num_blocks)# 遍历所有分块,将其显示在subplot中
for i in range(len(block_images)):plt.subplot(num_blocks, num_blocks, i+1)plt.imshow(cv2.cvtColor(block_images[i], cv2.COLOR_BGR2RGB))
plt.show()# 合并分块后的图像并显示
merged_image = merge_images(block_images, num_blocks)
plt.imshow(cv2.cvtColor(merged_image, cv2.COLOR_BGR2RGB))
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/181654.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

0X02

web9 阐释一波密码&#xff0c;依然没有什么 发现&#xff0c;要不扫一下&#xff0c;或者看一看可不可以去爆破密码 就先扫了看看&#xff0c;发现robots.txt 访问看看,出现不允许被访问的目录 还是继续尝试访问看看 就可以下载源码&#xff0c;看看源码 <?php $fl…

【音视频 | Ogg】RFC3533 :Ogg封装格式版本 0(The Ogg Encapsulation Format Version 0)

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

双目视觉检测 KX02-SY1000型测宽仪 有效修正和消除距离变化对测量的影响

双目视觉检测的基本原理 利用相机测量宽度时&#xff0c;由于单个相机在成像时存在“近大远小”的现象&#xff0c;并且单靠摄入的图像无法知道被测物的距离&#xff0c;所以由被测物的跳动导致的被测物到工业相机之间距离变化&#xff0c;使测量精度难以提高。 因此测宽仪需…

React基础知识02

一、通过属性来传值&#xff08;props&#xff09; react中可以使用属性&#xff08;props&#xff09;可以传递给子组件&#xff0c;子组件可以使用这些属性值来控制其行为和呈现输出。 例子&#xff1a; // 1.1 父组件 import React, { useState } from react // 1.2引入子…

Rust编程基础之6大数据类型

1.Rust数据类型 在 Rust 中, 每一个值都属于某一个 数据类型&#xff08;data type&#xff09;, 这告诉 Rust 它被指定为何种数据&#xff0c;以便明确数据处理方式。我们将看到两类数据类型子集&#xff1a;标量&#xff08;scalar&#xff09;和复合&#xff08;compound&a…

多态 多继承的虚表深度剖析 (3)

&#x1f4af; 博客内容&#xff1a;多态 &#x1f600; 作  者&#xff1a;陈大大陈 &#x1f680; 个人简介&#xff1a;一个正在努力学技术的准C后端工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎私信&#xff01; &#x1f496; 欢迎大家&#xff1a;这里是CSD…

NLP之Bert多分类实现案例(数据获取与处理)

文章目录 1. 代码解读1.1 代码展示1.2 流程介绍1.3 debug的方式逐行介绍 3. 知识点 1. 代码解读 1.1 代码展示 import json import numpy as np from tqdm import tqdmbert_model "bert-base-chinese"from transformers import AutoTokenizertokenizer AutoToken…

Open3D(C++) 最小二乘拟合平面(间接平差法)

目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。 一、算法原理 1、原理概述 通过传统最小二乘法对点云数据进行平面拟合时,可将误差只归因于一个方向上,本文假设误差只存在于 Z Z

Monarch Mixer:一种性能比Transformer更强的网络架构

六年前&#xff0c;谷歌团队在arXiv上发表了革命性的论文《Attention is all you need》。作为一种优势的机器学习网络架构&#xff0c;Transformer技术迅速席卷全球。Transformer一直是现代基础模型背后的主力架构&#xff0c;并且在不同的应用程序中取得了令人印象深刻的成功…

tbh着色

在tbh中&#xff0c;着色之前&#xff0c;首先可以可以创建多个色板&#xff0c;如果不同角色颜色不一样&#xff0c;就可以创建多个色板&#xff0c;每一个色板代表的角色不同。 1、创建色板 有两种方式&#xff1a; 方法一&#xff1a;在颜色菜单中&#xff0c;点击左上角 …

SQL面试

#(1)请写出要查询员工J开头的名字其工号(EMPNO)及部门名称(DEPTNA)的 SQL语句SELECT e.emp,e.name,d.deptna FROM emp e left join dept d on d.deptno e.deptno where e.name like J%#(2)请写出要查询 Kevin 所在部门的部门代号(DEPTNO)及部门名称(DEPTNA)的 SQL 语句SELECT e…

D-Link管理系统默认账号密码

默认口令为 admin:admin 登陆成功 文笔生疏&#xff0c;措辞浅薄&#xff0c;望各位大佬不吝赐教&#xff0c;万分感谢。 免责声明&#xff1a;由于传播或利用此文所提供的信息、技术或方法而造成的任何直接或间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c; 文章…

【RabbitMQ】RabbitMQ 集群的搭建 —— 基于 Docker 搭建 RabbitMQ 的普通集群,镜像集群以及仲裁队列

文章目录 一、集群分类1.1 普通模式1.2 镜像模式1.3 仲裁队列 二、普通集群2.1 目标集群2.2 获取 Erlang Cookie2.3 集群配置2.4 启动集群2.5 测试集群 三、镜像模式3.1 镜像模式的特征3.2 镜像模式的配置3.2.1 exactly 模式3.2.2 all 模式3.2.3 nodes 模式 3.3 测试镜像模式 四…

使用lua-resty-request库编写爬虫IP实现数据抓取

目录 一、lua-resty-request库介绍 二、使用lua-resty-request库进行IP数据抓取 1、获取IP地址 2、设置请求 3、处理数据 三、代码实现 四、注意事项 五、总结 本文将深入探讨如何使用lua-resty-request库在爬虫程序中实现IP数据抓取。我们将首先介绍lua-resty-request…

windows自动登陆

新建文本粘贴下面代码&#xff0c;另存为注册表文件 Windows Registry Editor Version 5.00[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Driver Signing] "Policy"hex:00[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon]"DefaultUserN…

UI设计感蓝色商务数据后台网站模板源码

蓝色商务数据后台网站模板是一款适合网站模板下载。提示&#xff1a;本模板调用到谷歌字体库&#xff0c;可能会出现页面打开比较缓慢。 演示下载 qnziyw点cn/wysc/qdmb/20852点html

K8S部署时IP问题

本次环境搭建需要安装三台Centos服务器&#xff08;一主二从&#xff09;&#xff1b;搭配的前提时做好ip的设置 主机IP规划 IP地址的设定需要根据自己主机来设置&#xff0c;在虚拟机的虚拟网络编辑器中看他给你的ip&#xff1b;不要查什么ipconfig了。 在虚拟网络编辑器中…

基于SSM的社区智慧养老监护管理平台

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

回顾十大数据恢复软件,帮助用于恢复丢失的文件!

您是否因丢失计算机上的重要文件而感到恐慌&#xff1f;你不是一个人&#xff01;数据丢失是许多人面临的严重问题&#xff0c;但幸运的是&#xff0c;有许多解决方案可以恢复数据。 在本文中&#xff0c;我将回顾十大数据恢复软件&#xff0c;以帮助您恢复丢失的文件&#xf…

ChatGPT 的 Text Completion

该章节我们来学习一下 “Text Completion” &#xff0c;也就是 “文本完成” 。“Text Completion” 并不是一种模型&#xff0c;而是指模型能够根据上下文自动完成缺失的文本部分&#xff0c;生成完整的文本。 ⭐ Text Completion 的介绍 Text Completion 也称为文本自动补全…