使用 Python 进行自然语言处理第 4 部分:文本表示

一、说明

        本文是在 2023 年 3 月为 WomenWhoCode 数据科学跟踪活动发表的系列文章中。早期的文章位于:第 1 部分(涵盖 NLP 简介)、第 2 部分(涵盖 NLTK 和 SpaCy 库)、第 2 部分(涵盖NLTK和SpaCy库)3(涵盖文本预处理技术)

二、文本表示

  • 文本数据以字母、单词、符号、数字或所有这些的集合的形式存在。例如“印度”、“、”、“Covid19”等。
  • 在我们将机器学习/深度学习算法应用于文本数据之前,我们必须以数字形式表示文本。单个单词和文本文档都可以转换为浮点数向量。
  • 将标记、句子表示为数值向量的过程称为“嵌入”,这些向量的多维空间称为嵌入空间。
  • 循环神经网络、长短期记忆网络、变形金刚等深度神经网络架构需要以固定维数值向量的形式输入文本。

2.1 一些术语:

  1. 文档:文档是许多单词的集合。
  2. 词汇:词汇是文档中唯一单词的集合。
  3. Token:Token是离散数据的基本单位。它通常指单个单词或标点符号。
  4. 语料库:语料库是文档的集合。
  5. 上下文:单词/标记的上下文是文档中左右围绕该单词/标记的单词/标记。
  6. 向量嵌入:基于向量的文本数字表示称为嵌入。例如,word2vec 或 GLoVE 是基于语料库统计的无监督方法。像tensorflow和keras这样的框架支持“嵌入层”。

2.2 文本表示应具有以下属性:

  1. 它应该唯一地标识一个单词(必须是双射)
  2. 应捕捉单词之间的形态、句法和语义相似性。相关词在欧德空间中应该比不相关词更接近出现。
  3. 这些表示应该可以进行算术运算。
  4. 通过表示,计算单词相似性和关系等任务应该很容易。
  5. 应该很容易从单词映射到其嵌入,反之亦然。

2.3 文本表示的一些突出技术:

  1. 一次性编码
  2. 词袋模型 — CountVectorizer 和带有 n 元语法的 CountVectorizer
  3. Tf-Idf模型
  4. Word2Vec 嵌入
  5. 手套包埋
  6. 快速文本嵌入
  7. ChatGPT 和 BERT 等 Transformer 使用自己的动态嵌入。

一热编码:

        这是将文本表示为数值向量的最简单技术。每个单词都表示为由 0 和 1 组成的唯一“One-Hot”二进制向量。对于词汇表中的每个唯一单词,向量包含一个 1,其余所有值为 0,向量中 1 的位置唯一标识一个单词。

例子:

        单词 Apple、Banana、Orange 和 Mango 的 OneHot 向量示例

from sklearn.preprocessing import OneHotEncoder
import nltk
from nltk import word_tokenize
document = "The rose is red. The violet is blue."
document = document.split()
tokens = [doc.split(" ") for doc in document]wordids = {token: idx for idx, token in enumerate(set(document))}
tokenids = [[wordids[token] for token in toke] for toke in tokens]onehotmodel = OneHotEncoder()
vectors = onehotmodel.fit_transform(tokenids)
print(vectors.todense())

2.4 词袋表示:CountVectorizer

        请参阅此处的详细信息:https ://en.wikipedia.org/wiki/Bag-of-words_model

        词袋 (BoW) 是一种无序的文本表示形式,用于描述文档中单词的出现情况。它具有文档中已知单词的词汇表以及已知单词存在的度量。词袋模型不包含有关文档中单词的顺序或结构的任何信息。

维基百科的例子:

文档1:约翰喜欢看电影。玛丽也喜欢电影。

文件2:玛丽也喜欢看足球比赛。

词汇1:“约翰”、“喜欢”、“去”、“看”、“电影”、“玛丽”、“喜欢”、“电影”、“太”

词汇2:“玛丽”、“也”、“喜欢”、“去”、“看”、“足球”、“游戏”

BoW1 = {“约翰”:1,“喜欢”:2,“观看”:1,“观看”:1,“电影”:2,“玛丽”:1,“太”:1};

BoW2 = {“玛丽”:1,“也”:1,“喜欢”:1,“到”:1,“观看”:1,“足球”:1,“游戏”:1};

Document3 是 document1 和 document2 的并集(包含文档 1 和文档 2 中的单词)

文件3:约翰喜欢看电影。玛丽也喜欢电影。玛丽还喜欢看足球比赛。

BoW3: {“约翰”:1、“喜欢”:3、“观看”:2、“观看”:2、“电影”:2、“玛丽”:2、“太”:1、“也”:1 ,“足球”:1,“游戏”:1}

让我们编写一个函数来在用向量表示文本之前对其进行预处理。

# This process_text() function returns list of cleaned tokens of the text
import numpy
import re
import string
import unicodedata
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
stop_words = stopwords.words('english')
lemmatizer = WordNetLemmatizer()def process_text(text):# Remove non-ASCII characterstext = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8', 'ignore')# Remove words not starting with alphabetstext = re.sub(r'[^a-zA-Z\s]', '', text)# Remove punctuation markstext = text.translate(str.maketrans('', '', string.punctuation))#Convert to lower casetext = text.lower()# Remove stopwordstext = " ".join([word for word in str(text).split() if word not in stop_words])# Lemmatizetext = " ".join([lemmatizer.lemmatize(word) for word in text.split()])return text

接下来,我们使用 Sklearn 库中的 CountVectorizer 将预处理后的文本转换为词袋表示。

#https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
#https://stackoverflow.com/questions/27697766/understanding-min-df-and-max-df-in-scikit-countvectorizer
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import nltk
document = ["The", "rose", "is", "red", "The",  "violet", "is", "blue"] #, "This is some text, just for demonstration"]processed_document = [process_text(item) for item in document]
processed_document = [x for x in processed_document if x != '']
print(processed_document)bow_countvect = CountVectorizer(min_df = 0., max_df = 1.)matrix = bow_countvect.fit_transform(processed_document)
matrix.toarray()
vocabulary = bow_countvect.get_feature_names_out()
print(matrix)
matrix.todense()

2.5 词袋表示:n-grams

        Simpe Bag-of-words 模型不存储有关单词顺序的信息。n-gram 模型可以存储这些空间信息。

        单词/标记被称为“gram”。n-gram 是出现在文本文档中的一组连续的 n-token。
一元词表示 1 个单词,二元词表示两个词,三元词表示一组 3 个词……

        例如对于文本(来自维基百科):

        文档1:约翰喜欢看电影。玛丽也喜欢电影。

        二元模型将文本解析为以下单元,并像简单的 BoW 模型一样存储每个单元的术语频率。

        [“约翰喜欢”、“喜欢”、“看”、“看电影”、“玛丽喜欢”、“喜欢电影”、“也看电影”,]

Bag-of-word 模型可以被认为是 n-gram 模型的特例,其中 n=1

#https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
from sklearn.feature_extraction.text import CountVectorizerdocument = ["The rose is red.", "The violet is blue.", "This is some text, just for demonstration"]
ngram_countvect = CountVectorizer(ngram_range = (2, 2), stop_words = 'english')
#ngram_range paramenter to count vectorizer indicates the lower and upper boundary of the range of n-values for 
#different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. 
#For example an ngram_range of (1, 1) means only unigrams, (1, 2) means unigrams and bigrams, and (2, 2) means only bigrams.matrix = ngram_countvect.fit_transform(document)
vocabulary = ngram_countvect.get_feature_names_out()
matrix.todense()

三、Tf-Idf 矢量化器:术语频率 — 逆文档频率

可以在这里找到 TF-IDF 矢量器的非常好的解释

  • 文档“d”中术语/单词“w”的 Tf-Idf 分数 tfidf(w,D) 是两个指标的乘积:术语频率 (tf) 和逆文档频率 (idf)。即 tfidf(w, d, C) = tf(w,d)*idf(w,d,C)
  • 其中w是术语或单词,d是文档,C是包含总共N个文档(包括文档d)的语料库。
  • 词频 tf(w,d) 是文档 d 中单词 w 的频率。术语频率可以根据文档的长度进行调整(出现的原始计数除以文档中的单词数),它可以是对数缩放频率(例如 log(1 + 原始计数)),也可以是布尔频率(例如,如果该术语在文档中出现,则为 1;如果该术语在文档中未出现,则为 0)。
  • 文档频率:是一个术语/单词 w 在一组 N 个文档(语料库)中出现的频率。逆文档频率是衡量一个词在语料库中的常见或罕见程度的指标。更少的是 IDF,更常见的是这个词,反之亦然。单词的 IDF 是通过将语料库中的文档总数除以包含该单词的文档数量的对数来计算的。逆文档频率是术语/单词信息量的度量。频繁出现的单词信息量较少。单词的逆文档频率是在一组文档(语料库)中计算的。
from sklearn.feature_extraction.text import TfidfVectorizerdocument = ["The rose is red.", "The violet is blue.", "This is some text, just for demonstration"]tf_idf = TfidfVectorizer(min_df = 0., max_df = 1., use_idf = True)
tf_idf_matrix = tf_idf.fit_transform(document)
tf_idf_matrix = tf_idf_matrix.toarray()
tf_idf_matrix

四、词嵌入

上述文本表示方法通常不能捕获单词的语义和上下文。为了克服这些限制,我们使用嵌入。嵌入是通过训练庞大数据集的模型来学习的。这些嵌入通过考虑句子中的相邻单词以及句子中单词的顺序来捕获单词的上下文。三个著名的词嵌入是:Word2Vec、GloVe、FastText

词向量

  • 是一个在巨大文本语料库上训练的无监督模型。它创建单词的词汇表以及表示词汇表的向量空间中单词的分布式连续密集向量表示。它捕获上下文和语义的相似性。
  • 我们可以指定词嵌入向量的大小。向量总数本质上就是词汇表的大小。
  • Word2Vec中有两种不同的模型架构类型——CBOW(连续词袋)模型、Skip Gram模型

CBOW 模型 - 尝试根据源上下文单词预测当前目标单词。Skip Gram 模型尝试预测给定目标单词的源上下文单词。

from gensim.models import word2vec
import nltk
document = ["The rose is red.", "The violet is blue.", "This is some text, just for demonstration"]tokenized_corpus = [nltk.word_tokenize(doc) for doc in document]
#parameters of word2vec model
# feature_size : integer   :  Word vector dimensionality
# window_context : integer :  The maximum distance between the current and predicted word within a sentence.(2, 10)
# min_word_count : integer : Ignores all words with total absolute frequency lower than this - (2, 100)
# sample : integer  : The threshold for configuring which higher-frequency words are randomly downsampled. Highly influencial. - (0, 1e-5)
# sg: integer: Skip-gram model configuration, CBOW by defaultwordtovector = word2vec.Word2Vec(tokenized_corpus,  window = 3, min_count = 1, sg = 1)
print('Embedding of the word blue')
print(wordtovector.wv['blue'])print('Size of Embedding of the word blue')
print(wordtovector.wv['blue'].shape)

如果您希望查看词汇表中的所有向量,请使用以下代码:

#All the vectors for all the words in our input text
words = wordtovector.wv.index_to_key
wvs = wordtovector.wv[words]
wvs

或者将它们转换为 pandas 数据框

import pandas as pd
df = pd.DataFrame(wvs, index = words)
df

五、GloVe库(手套)

  • 全局向量 (GloVe) 是一种为 Word2Vec 等单词生成密集向量表示的技术。它首先创建一个由(单词,上下文)对组成的巨大的单词-上下文共现矩阵。该矩阵中的每个元素代表上下文中单词的频率。可以应用矩阵分解技术来近似该矩阵。由于 Glove 是在 globar 词-词共现矩阵上进行训练的,因此它使我们能够拥有一个具有有意义的子结构的向量空间。
  • Spacy 库支持 GloVe 嵌入。为了使用英语嵌入,我们需要下载管道“en_core_web_lg”,这是大型英语语言管道。我们使用 SpaCy 得到标准的 300 维 GloVe 词向量。
import spacy
import nltknlp = spacy.load('en_core_web_lg')total_vectors = len(nlp.vocab.vectors)
print('Total word vectors:', total_vectors)document = ["The rose is red.", "The violet is blue.", "This is some text, just for demonstration"]
tokenized_corpus = [nltk.word_tokenize(doc) for doc in document]vocab = list(set([word for wordlist in tokenized_corpus for word in wordlist]))glovevectors = np.array([nlp(word).vector for word in vocab])#Spacy's nlp pipeline has the vectors for these words
glove_vec_df = pd.DataFrame(glovevectors, index=vocab)
glove_vec_df

如果您想查看单词“violet”的手套向量,请使用代码

glove_vec_df.loc['violet']

希望查看所有词汇向量?

glovevectors

使用 TSNE 可视化数据点

from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(n_components = 2, random_state = 42, n_iter = 250, perplexity = 3)
tsneglovemodel = tsne.fit_transform(glovevectors)
labels = vocab
plt.figure(figsize=(12, 6))
plt.scatter(tsneglovemodel[:, 0], tsneglovemodel[:, 1], c='red', edgecolors='r')
for label, x, y in zip(labels, tsneglovemodel[:, 0], tsneglovemodel[:, 1]):
plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset points')

六 快速文本

        FastText 在 Wikipedia 和 Common Crawl 上进行了训练。它包含在 Wikipedia 和 Crawl 上训练的 157 种语言的词向量。它还包含语言识别和各种监督任务的模型。您可以在 gensim 库中试验 FastText 向量。

import warnings
warnings.filterwarnings("ignore")from gensim.models.fasttext import FastText
import nltk
document = ["The rose is red.", "The violet is blue.", "This is some text, just for demonstration"]
tokenized_corpus = [nltk.word_tokenize(doc) for doc in document]fasttext_model = FastText(tokenized_corpus, window = 5, min_count = 1, sg = 1)
import warnings
warnings.filterwarnings("ignore")from gensim.models.fasttext import FastText
import nltk
document = ["The rose is red.", "The violet is blue.", "This is some text, just for demonstration"]
tokenized_corpus = [nltk.word_tokenize(doc) for doc in document]fasttext_model = FastText(tokenized_corpus, window = 5, min_count = 1, sg = 1)print('Embedding')
print(fasttext_model.wv['blue'])print('Embedding Shape')
print(fasttext_model.wv['blue'].shape)

        要查看词汇表中单词的向量,您可以使用此代码

words_fasttext = fasttext_model.wv.index_to_key
wordvectors_fasttext = fasttext_model.wv[words]
wordvectors_fasttext

        在本系列的下一篇文章中,我们将介绍文本分类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/182730.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

产品经理日常工作流程汇总

产品经理在日常的团队工作过程中&#xff0c;承担着重要的衔接作用。由于工作性质的特殊性&#xff0c;产品经理日常工作内容特别繁杂&#xff0c;导致很多产品小白刚一上手&#xff0c;会无从下手&#xff0c;经常丢三落四。这时拥有一个好的工作流程&#xff0c;很大程度上就…

C语言 用字符串比较函数cmp来做一个门禁:账号密码是否匹配 (干货满满)

#include<stdio.h> #include<string.h> void fun04() {for (int i 0; i < 3; i){char *str01 "hello";char uname[100] ;printf("请输入账号");scanf("%s",uname);char *str02 "123456";char pword[100];printf(&qu…

Chromebook文件夹应用新功能

种种迹象表明 Google 旗下的 Chromebooks 近期要有大动作了。根据 Google 团队成员透露&#xff0c;公司计划在 Chrome OS 的资源管理器中新增“Recents”&#xff08;最近使用&#xff09;文件&#xff0c;以便于用户更快找到所需要的文件。 种种迹象表明 Google 旗下的 Chro…

【移远QuecPython】EC800M物联网开发板调用网络API(使用SIM卡联网并调用高德地图API的定位坐标转换)

【移远QuecPython】EC800M物联网开发板调用网络API&#xff08;使用SIM卡联网并调用高德地图API的定位坐标转换&#xff09; 高德API使用方法&#xff1a; 文章目录 API相关配置SIM卡联网网络操作API调用 高德地图API产品介绍适用场景使用限制使用说明坐标转换 附录&#xff…

【漏洞复现】Apache_HTTP_2.4.50_路径穿越漏洞(CVE-2021-42013)

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞扫描3、漏洞验证方式一 curl方式二 bp抓捕 1.5、修复建议 说明内容漏洞编号CVE-2021-42013漏洞名称…

Visual Studio 2010 软件安装教程(附下载链接)——计算机二级专用编程软件

下载链接&#xff1a; 提取码:2wAKhttps://www.123pan.com/s/JRpSVv-9injv.html 安装步骤如下&#xff1a; 1.如图所示&#xff0c;双击打开【Visual Studio 2010简体中文旗舰版】文件夹 2.如图所示&#xff0c;找到“Setup”文件夹打开&#xff0c;双击运行“setup” 3.如图…

RxJava/RxAndroid的基本使用方法(一)

文章目录 一、什么是RxJava二、使用前的准备1、导入相关依赖2、字段含意3、Upstream/Downstream——上/下游4、BackPressure5、BackPressure策略6、“热” and “冷” Observables7、 基类8、事件调度器9、操作符是什么&#xff1f; 三、RxJava的简单用法1、Observable——Obse…

看了“米小圈”,才知道竟然有如此宝藏的动画片

在这个竞争激烈的时代里&#xff0c;作为孩子家长&#xff0c;都希望自己的孩子将来能够出类拔萃&#xff0c;我也不例外。自从孩子上小学后&#xff0c;就将孩子的学习作为第一要务&#xff0c;不再一味地纵容他贪玩&#xff0c;不允许他浪费时间。 我家孩子很淘气&#xff0…

【网络协议】聊聊DNS协议如何域名解析和负载均衡

DNS 服务器 我们知道如果使用IP地址进行访问网站&#xff0c;很难进行记忆&#xff0c;所以DNS的作用是将域名转换成对应的IP地址。如果全世界都使用同一台DNS服务器&#xff0c;那么DNS服务器本身需要保证服务的高可用、高性能&#xff0c;以及分布式等。最好的方式就是分层。…

【MongoDB】MongoExport如何过滤数据导出

问题 使用MongoDB处理导出数据时&#xff0c;想增加数据过滤操作。 例如&#xff1a;导出所有isGirl为true的所有数据。 分析 在mongoexport说明文档中找到了query字段和queryFile字段&#xff0c;用来进行数据查询匹配导出。 query字段 后面直接跟 json格式数据。 queryF…

java高并发系列-第1天:必须知道的几个概念

同步&#xff08;Synchronous&#xff09;和异步&#xff08;Asynchronous&#xff09; 同步和异步通常来形容一次方法调用&#xff0c;同步方法调用一旦开始&#xff0c;调用者必须等到方法调用返回后&#xff0c;才能继续后续的行为。异步方法调用更像一个消息传递&#xff…

承载AI计算的数据中心网络和传统数据中心有何不同?

生成式AI正在风靡全球&#xff0c;不少企业开始研究如何在其业务流程中采用人工智能技术&#xff0c;更有一些企业客户开始考虑在数据中心和私有云中部署自己的AIGC和 GPU 扩展网络。从网络角度来看&#xff0c;用于承载这类业务的数据中心与传统的数据中心有很大不同&#xff…

JVM 内存和 GC 算法

文章目录 内存布局直接内存执行引擎解释器JIT 即时编译器JIT 分类AOT 静态提前编译器&#xff08;Ahead Of Time Compiler&#xff09; GC什么是垃圾为什么要GC垃圾回收行为Java GC 主要关注的区域对象的 finalization 机制GC 相关算法引用计数算法&#xff08;Reference Count…

Flink(一)【WordCount 快速入门】

前言 学完了 Hadoop、Spark&#xff0c;本想着先把 Kafka、Flume 这些工具先学完的&#xff0c;但想了想还是把核心的技术先学完最后再去把那些工具学学。 最近心有点累哈哈哈&#xff0c;偷偷立个 flag&#xff0c;反正也没人看&#xff0c;明年的今天来这里还愿哈&#xff0c…

深度学习之基于Yolov5人体姿态摔倒识别分析报警系统(GUI界面)

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 系统设计概述&#xff1a; 传感器采集&#xff1a;通过在场景中布置摄像头或红外传感器等设备&#xff0c;采集人体…

GZ035 5G组网与运维赛题第8套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项&#xff08;高职组&#xff09; 赛题第8套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通&#xff08;35分&#xff09; 子任务1&#xff1a;5G公共网络部署与调试&#xff08;15分&#xff09; 子…

数学到底在哪里支撑着编程?

如果编程语言是血肉&#xff0c;那么数学的思想和知识就是灵魂。它可以帮助你选择合适的数据结构和算法&#xff0c;提升系统效率&#xff0c;并且赋予机器智慧。在大数据和智能化的时代更是如此。举个例子&#xff0c;我们在小学就学过的余数&#xff0c;其实在编程的世界里也…

python基础(Python高级特性(切片、列表生成式)、字符串的正则表达式、函数、模块、Python常用内置函数、错误处理)培训讲义

文章目录 1. Python高级特性&#xff08;切片、列表生成式&#xff09;a) 切片的概念、列表/元组/字符串的切片切片的概念列表切片基本索引简单切片超出有效索引范围缺省 扩展切片step为正数step为负数 b) 列表生成式以及使用列表生成式需要注意的地方概念举例说明1. 生成一个列…

Python详细教程,如何使用Python进行数据可视化?

文章目录 前言一、导入必要的库二、加载数据三、创建基本图表四、添加更多细节五、使用Seaborn库创建更复杂的图表关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③…

3D医学三维技术影像PACS系统源码

一、系统概述 3D医学影像PACS系统&#xff0c;它集影像存储服务器、影像诊断工作站及RIS报告系统于一身,主要有图像处理模块、影像数据管理模块、RIS报告模块、光盘存档模块、DICOM通讯模块、胶片打印输出等模块组成&#xff0c; 具有完善的影像数据库管理功能&#xff0c;强大…