自动驾驶算法(八):基于概率图算法的路径规划--以PRM为例以及路径规划算法总结

目录

1 概率路线算法简介

2 代码解析

3 路径规划算法总结


1 概率路线算法简介

        它属于采样算法里面的一类。主要步骤分为两步:

        1.构建概率路线图

                (1)随机采样点
                (2)将新采样点和距离小于阈值的 采样点连接产生图

        2.在图上寻找路径

                (1)Dijkstra算法
                (2)A*算法

        刚开始有起点、终点两个点作为初始化的采样点:

        我们开始随机采样:

        进行连接。再采样再连接:

        如果采样点有障碍物,我选择不连接:

        我们继续采样,我们简单的举例:

        这样我们就建立了一个图了,我们再通过Dijkstra算法或者A*算法来做路径规划。

        缺点是:这个是两阶段算法,速度较慢且没法寻找最优路径。

        可以用作局部路径规划:

2 代码解析

        先来看一下运行结果:

        我们首先还是定义了起点坐标终点坐标以及障碍物的坐标。

        规划的主函数如下:

# start xy  goal xy 障碍物xy 机器人大小
def prm_planning(sx, sy, gx, gy, ox, oy, rr):obstacle_kd_tree = cKDTree(np.vstack((ox, oy)).T)sample_x, sample_y = sample_points(sx, sy, gx, gy,rr, ox, oy, obstacle_kd_tree)if show_animation:plt.plot(sample_x, sample_y, ".b")road_map = generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree)rx, ry = dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y)return rx, ry

        obstacle_kd_tree = cKDTree(np.vstack((ox, oy)).T):这行代码是用于构建一个k维树(kd-tree)的数据结构,以便于在二维空间中高效地查找最近邻的障碍物。具体来说,它使用了一个名为cKDTree的函数来构建kd-tree。

        

  • np.vstack((ox, oy)).T:

    • oxoy是一些障碍物的x和y坐标的数组。
    • np.vstack用于垂直堆叠(将数组按垂直方向拼接在一起),((ox, oy)).T表示将这个堆叠后的矩阵进行转置,以保证每一行代表一个点,每列代表一个维度(在这里是x和y坐标)。

        

  • cKDTree():

    • 这是一个用于构建kd-tree的函数,它接受一个二维数组作为输入,这个数组中的每一行代表一个点,每列代表一个维度。

        假设你有以下障碍物的坐标:

ox = [1, 2, 3, 4, 5]
oy = [1, 2, 3, 4, 5]

        那么,通过执行以下代码:

obstacle_kd_tree = cKDTree(np.vstack((ox, oy)).T)

        将会得到一个名为obstacle_kd_tree的kd-tree数据结构,该结构会根据障碍物的坐标构建一个高效的查找树。你可以使用这个kd-tree来进行最近邻的搜索,例如查找离一个给定点最近的障碍物。

        比如,如果你想找到离点(3, 3)最近的障碍物,你可以使用以下代码:

nearest_obstacle_index = obstacle_kd_tree.query([3, 3])[1]
nearest_obstacle = (ox[nearest_obstacle_index], oy[nearest_obstacle_index])
print(nearest_obstacle)

        这将会输出离点(3, 3)最近的障碍物的坐标,也就是(3, 3)

        我们再来看随机取样函数:

def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree):max_x = max(ox)max_y = max(oy)min_x = min(ox)min_y = min(oy)sample_x, sample_y = [], []while len(sample_x) < N_SAMPLE:tx = (random.random() * (max_x - min_x)) + min_xty = (random.random() * (max_y - min_y)) + min_ydist, index = obstacle_kd_tree.query([tx, ty])if dist >= rr:sample_x.append(tx)sample_y.append(ty)sample_x.append(sx)sample_y.append(sy)sample_x.append(gx)sample_y.append(gy)return sample_x, sample_y

        首先计算了障碍物坐标的最大最小值,以确定随机采样点的范围。创建了两个空列表sample_x和sample_y,用于存储采样到的点的x和y坐标。使用一个循环来生成随机点,直到采样到足够数量的点(N_SAMPLE)为止。每次循环中,随机生成一个点(tx, ty),并使用kd-tree查询该点附近的最近障碍物距离和索引。random.random() 返回一个大于等于0且小于1的随机浮点数。在上述代码片段中,random.random() 被用于生成一个随机的横坐标 tx 和纵坐标 ty,以便在地图上随机采样点。这样可以在地图范围内均匀地选取随机点,以便进行路径规划。

road_map = generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree)
def generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree):"""Road map generationsample_x: [m] x positions of sampled pointssample_y: [m] y positions of sampled pointsrr: Robot Radius[m]obstacle_kd_tree: KDTree object of obstacles"""road_map = []n_sample = len(sample_x)sample_kd_tree = cKDTree(np.vstack((sample_x, sample_y)).T)for (i, ix, iy) in zip(range(n_sample), sample_x, sample_y):dists, indexes = sample_kd_tree.query([ix, iy], k=n_sample)edge_id = []for ii in range(1, len(indexes)):nx = sample_x[indexes[ii]]ny = sample_y[indexes[ii]]if not is_collision(ix, iy, nx, ny, rr, obstacle_kd_tree):edge_id.append(indexes[ii])if len(edge_id) >= N_KNN:breakroad_map.append(edge_id)if show_roadmap:plot_road_map(road_map, sample_x, sample_y)plt.plot(sample_x, sample_y, ".b")return road_map

        这段代码定义了一个名为 generate_road_map 的函数,它用于生成一个道路图,以便后续的路径规划算法可以在其中搜索有效的路径。

函数的主要功能如下:

  1. 创建了一个空列表 road_map 用于存储道路图信息。

  2. 计算了采样点的数量 n_sample

  3. 使用 cKDTree 创建了一个kd-tree数据结构,用于高效地查询采样点。

  4. 对于每一个采样点,循环执行以下操作:

    • 使用kd-tree查询最近的采样点,并返回距离和索引。
    • 初始化一个空列表 edge_id 用于存储可以连接到当前点的其他采样点的索引。
    • 对于查询结果中的每一个点,检查是否与当前点可以连接而且没有碰撞。如果满足条件,将其索引加入到 edge_id 列表中。
    • 如果已经找到足够数量(N_KNN)的连接点,则结束循环。
  5. edge_id 列表添加到 road_map 中,记录了与每个采样点相连接的其他采样点的索引。

  6. 如果设定了 show_roadmapTrue,则会调用一个名为 plot_road_map 的函数来可视化生成的道路图,并在图上绘制采样点。

  7. 最后,返回生成的道路图。

        最后我们用Dijkstra进行路径规划。完整代码如下:

"""Probabilistic Road Map (PRM) Plannerauthor: Atsushi Sakai (@Atsushi_twi)"""import random
import math
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import cKDTree# parameter
N_SAMPLE = 100  # number of sample_points
N_KNN = 10  # number of edge from one sampled point
MAX_EDGE_LEN = 30.0  # [m] Maximum edge lengthshow_animation = True
show_roadmap = Trueclass Node:"""Node class for dijkstra search"""def __init__(self, x, y, cost, parent_index):self.x = xself.y = yself.cost = costself.parent_index = parent_indexdef __str__(self):return str(self.x) + "," + str(self.y) + "," +\str(self.cost) + "," + str(self.parent_index)# start xy  goal xy 障碍物xy 机器人大小
def prm_planning(sx, sy, gx, gy, ox, oy, rr):obstacle_kd_tree = cKDTree(np.vstack((ox, oy)).T)sample_x, sample_y = sample_points(sx, sy, gx, gy,rr, ox, oy, obstacle_kd_tree)if show_animation:plt.plot(sample_x, sample_y, ".b")road_map = generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree)rx, ry = dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y)return rx, rydef is_collision(sx, sy, gx, gy, rr, obstacle_kd_tree):x = sxy = sydx = gx - sxdy = gy - syyaw = math.atan2(gy - sy, gx - sx)d = math.hypot(dx, dy)if d >= MAX_EDGE_LEN:return TrueD = rrn_step = round(d / D)for i in range(n_step):dist, _ = obstacle_kd_tree.query([x, y])if dist <= rr:return True  # collisionx += D * math.cos(yaw)y += D * math.sin(yaw)# goal point checkdist, _ = obstacle_kd_tree.query([gx, gy])if dist <= rr:return True  # collisionreturn False  # OKdef generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree):"""Road map generationsample_x: [m] x positions of sampled pointssample_y: [m] y positions of sampled pointsrr: Robot Radius[m]obstacle_kd_tree: KDTree object of obstacles"""road_map = []n_sample = len(sample_x)sample_kd_tree = cKDTree(np.vstack((sample_x, sample_y)).T)for (i, ix, iy) in zip(range(n_sample), sample_x, sample_y):dists, indexes = sample_kd_tree.query([ix, iy], k=n_sample)edge_id = []for ii in range(1, len(indexes)):nx = sample_x[indexes[ii]]ny = sample_y[indexes[ii]]if not is_collision(ix, iy, nx, ny, rr, obstacle_kd_tree):edge_id.append(indexes[ii])if len(edge_id) >= N_KNN:breakroad_map.append(edge_id)if show_roadmap:plot_road_map(road_map, sample_x, sample_y)plt.plot(sample_x, sample_y, ".b")return road_mapdef dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y):"""s_x: start x position [m]s_y: start y position [m]gx: goal x position [m]gy: goal y position [m]ox: x position list of Obstacles [m]oy: y position list of Obstacles [m]rr: robot radius [m]road_map: ??? [m]sample_x: ??? [m]sample_y: ??? [m]@return: Two lists of path coordinates ([x1, x2, ...], [y1, y2, ...]), empty list when no path was found"""start_node = Node(sx, sy, 0.0, -1)goal_node = Node(gx, gy, 0.0, -1)open_set, closed_set = dict(), dict()open_set[len(road_map) - 2] = start_nodepath_found = Truewhile True:if not open_set:print("Cannot find path")path_found = Falsebreakc_id = min(open_set, key=lambda o: open_set[o].cost)current = open_set[c_id]# show graphif show_animation and len(closed_set.keys()) % 2 == 0:# for stopping simulation with the esc key.plt.gcf().canvas.mpl_connect('key_release_event',lambda event: [exit(0) if event.key == 'escape' else None])plt.plot(current.x, current.y, "xg")plt.pause(0.001)if c_id == (len(road_map) - 1):print("goal is found!")goal_node.parent_index = current.parent_indexgoal_node.cost = current.costbreak# Remove the item from the open setdel open_set[c_id]# Add it to the closed setclosed_set[c_id] = current# expand search grid based on motion modelfor i in range(len(road_map[c_id])):n_id = road_map[c_id][i]dx = sample_x[n_id] - current.xdy = sample_y[n_id] - current.yd = math.hypot(dx, dy)node = Node(sample_x[n_id], sample_y[n_id],current.cost + d, c_id)if n_id in closed_set:continue# Otherwise if it is already in the open setif n_id in open_set:if open_set[n_id].cost > node.cost:open_set[n_id].cost = node.costopen_set[n_id].parent_index = c_idelse:open_set[n_id] = nodeif path_found is False:return [], []# generate final courserx, ry = [goal_node.x], [goal_node.y]parent_index = goal_node.parent_indexwhile parent_index != -1:n = closed_set[parent_index]rx.append(n.x)ry.append(n.y)parent_index = n.parent_indexreturn rx, rydef plot_road_map(road_map, sample_x, sample_y):  # pragma: no coverfor i, _ in enumerate(road_map):for ii in range(len(road_map[i])):ind = road_map[i][ii]plt.plot([sample_x[i], sample_x[ind]],[sample_y[i], sample_y[ind]], "-c")def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree):# 计算了障碍物坐标的最大最小值,以确定随机采样点的范围。max_x = max(ox)max_y = max(oy)min_x = min(ox)min_y = min(oy)# 创建了两个空列表sample_x和sample_y,用于存储采样到的点的x和y坐标。sample_x, sample_y = [], []# 使用一个循环来生成随机点,直到采样到足够数量的点(N_SAMPLE)为止。每次循环中,随机生成一个点(tx, ty),并使用kd-tree查询该点附近的最近障碍物距离和索引。while len(sample_x) < N_SAMPLE:tx = (random.random() * (max_x - min_x)) + min_xty = (random.random() * (max_y - min_y)) + min_ydist, index = obstacle_kd_tree.query([tx, ty])# 如果该点与最近障碍物的距离大于等于rr(即避免采样到障碍物附近),则将该点加入采样列表。if dist >= rr:sample_x.append(tx)sample_y.append(ty)# 最后,将起始点和目标点也加入到采样列表中,并返回采样到的点的x和y坐标列表。sample_x.append(sx)sample_y.append(sy)sample_x.append(gx)sample_y.append(gy)return sample_x, sample_ydef main():print(__file__ + " start!!")# start and goal positionsx = 10.0  # [m]sy = 10.0  # [m]gx = 50.0  # [m]gy = 50.0  # [m]robot_size = 1.0  # [m]ox = []oy = []for i in range(60):ox.append(i)oy.append(0.0)for i in range(60):ox.append(60.0)oy.append(i)for i in range(61):ox.append(i)oy.append(60.0)for i in range(61):ox.append(0.0)oy.append(i)for i in range(40):ox.append(20.0)oy.append(i)for i in range(40):ox.append(40.0)oy.append(60.0 - i)if show_animation:plt.plot(ox, oy, ".k")plt.plot(sx, sy, "^r")plt.plot(gx, gy, "^c")plt.grid(True)plt.axis("equal")rx, ry = prm_planning(sx, sy, gx, gy, ox, oy, robot_size)assert rx, 'Cannot found path'if show_animation:plt.plot(rx, ry, "-r")plt.pause(0.001)plt.show()if __name__ == '__main__':main()

3 路径规划算法总结

        完备性:是指如果在起始点和目标点间有路径解存在,那么一定可以得到解,如果得不到解那么一定说明没有解存在。
        概率完备性:是指如果在起始点和目标点间有路径解存在,只要规划或搜索的时间足够长,就一定能确保找到一条路径解。
        最优性:是指规划得到的路径在某个评价指标上是最优的(评价指标一般为路径的长度)。
        渐进最优性:是指经过有限次规划迭代后得到的路径是接近最优的次优路径,且每次迭代后都与最优路径更加接近,是一个逐渐收敛的过程。

        规划速度:RRT系列 > A*算法 > Dijkstra算法 > 基于智能算法的路径规划算法

        但如果是狭长路径

        RRT算法会寻找非常久的时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/184065.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据中经常使用的指令:

1、Hadoop&#xff1a; 1、关闭Hadoop集群的安全模式&#xff1a; hdfs dfsadmin -safemode leave#查看集群的模式的状态&#xff1a; hdfs dfsadmin -safemode get 2、启动、关闭Hadoop集群&#xff1a; start-all.sh stop-all.sh 3、停止yarn中进程的命令&#xff1a; yar…

游戏中的-雪花算法

1、什么是雪花算法&#xff1f; 雪花算法&#xff08;Snowflake&#xff09;是一种生成唯一ID的算法。在游戏开发过程中会为玩家生成唯一的id&#xff0c;或者玩家获得一件装备&#xff0c;为这件装备生成唯一的Id&#xff0c;将此角色和装备的Id保存于数据库当中。 全局唯一性…

决策式AI与生成式AI

人工智能中深度学习&#xff0c;是一种受人脑的生物神经网络机制启发&#xff0c;并模仿人脑来解释、处理数据的机器学习技术&#xff0c;它能自动对数据进行特征提取、识别、决策和生成。它可以从不同的维度进行划分&#xff0c;如果按模型的特点来划分可分为决策式AI和生成式…

Unity 实现文字过长显示省略号

为了整体效果&#xff0c;当文字过长时&#xff0c;我们就会把超出范围的文字弄成省略号。 要实现文字过长显示省略号&#xff0c;只需要使用TextMeshPro&#xff0c;并设置Overflow属性为Ellipsis即可。 如下图&#xff1a; 记。

fmx windows 下 制作无边框窗口最小化最大化并鼠标可拖移窗口

1,最顶端 放一个rectangle 置顶 ,此区域后面实现鼠标拖动 移动窗口,可在上面放置最大,最小,关闭按钮 2,窗口边框模式 设置 none 3,rectangel mousemove事件 uses Winapi.Windows,Winapi.Messages,FMX.Platform.Winprocedure TfrmMain.Rectangle1MouseMove(Sender: TObje…

【ARM Trace32(劳特巴赫) 使用介绍 2 - Veloce 环境中使用trace32 连接 Cortex-M33】

文章目录 T32MARM 介绍Trace32 .t32 和 .cmm 差异veloce 下启动TRACE321.1.3 TAP 状态机操作命令1.1.3.1 IDCODE&#xff08;Identification Code&#xff09;寄存器 介绍 T32MARM 介绍 T32MARM 是 Lauterbach 的 Trace32 软件包的一部分&#xff0c;专门用于 ARM 基础架构的微…

ElasticSearch 高级查询语法Query DSL实战

ES倒排索引 当数据写入 ES 时&#xff0c;数据将会通过 分词 被切分为不同的 term&#xff0c;ES 将 term 与其对应的文 档列表建立一种映射关系&#xff0c;这种结构就是 倒排索引。如下图所示&#xff1a; 为了进一步提升索引的效率&#xff0c;ES 在 term 的基础上利用 ter…

Redis中的渐进式遍历-Scan命令

之前我们学习过遍历命令keys,而keys *是一次性的把整个redis中所有的key都获取到.在不知道当前redis中有多少key的情况下,这个操作是非常危险的,可能会一下子得到太多的key而阻塞redis服务器.从而使其他redis客户端卡顿. 通过渐进式遍历,就可以做到,既可以获取到所有的key,同时…

linux服务器添置一块新硬盘操作

之前有一台ubuntu服务器&#xff0c;考虑未来存储容量可能不够&#xff0c;添加了一块新的硬盘&#xff0c;这是本次添置硬盘过程。 首次接上硬盘&#xff0c;提示&#xff1a; 没有找到新接入设备&#xff0c;查看接线&#xff0c;主板有个硬盘接线端子坏了&#xff0c;更换一…

【MySQL事务篇】多版本并发控制(MVCC)

多版本并发控制(MVCC) 文章目录 多版本并发控制(MVCC)1. 概述2. 快照读与当前读2.1 快照读2.2 当前读 3. MVCC实现原理之ReadView3.1 ReadView概述3.2 设计思路3.3 ReadView的规则3.4 MVCC整体操作流程 4. 举例说明4.1 READ COMMITTED隔离级别下4.2 REPEATABLE READ隔离级别下 …

C# wpf 实现任意控件(包括窗口)更多拖动功能

系列文章目录 第一章 Grid内控件拖动 第二章 Canvas内控件拖动 第三章 任意控件拖动 第四章 窗口拖动 第五章 附加属性实现任意拖动 第六章 拓展更多拖动功能&#xff08;本章&#xff09; 文章目录 系列文章目录前言一、添加的功能1、任意控件MoveTo2、任意控件DragMove3、边…

【计算机网络笔记】网络层服务与核心功能

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

[云原生案例2.1 ] Kubernetes的部署安装 【单master集群架构 ---- (二进制安装部署)】节点部分

文章目录 1. 常见的K8S安装部署方式1.1 Minikube1.2 Kubeadm1.3 二进制安装部署 2. Kubernetes单master集群架构 ---- &#xff08;二进制安装部署&#xff09;2.1 前置准备2.2 操作系统初始化2.3 部署 docker引擎 ---- &#xff08;所有 node 节点&#xff09;2.4 部署 etcd 集…

Windows 下编译 TensorFlow 2.9.1 CC库

参考 Intel 的 tensorflow 编译指导&#xff0c;不过项目还是可以用 TF原本的&#xff0c;不是一定要选择Intel 的TF版本。 安装 MSVC 2019 安装 Intel OneDNN OneMKL 似乎也可以不安装 ( & ) https://www.intel.cn/content/www/cn/zh/developer/articles/tool/one…

Linux的常见指令(三)

目录 一、管道 | 二、find 三、which 四、grep 五、zip/unzip 六、alias 七、输出重定向与输入重定向 1、echo 2、输出重定向 3、输入重定向 八、tar 九、bc 十、uname -r 十一、热键 一、管道 | 我们首先创建一个下面这样的文件 前面我们知道了使用head和tail分…

【T690 之十二】基于方寸EVB2开发板(T690芯片)构建基于GMSSL的文件系统的方式

备注&#xff1a; 1&#xff0c;假设您已对方寸微电子的T690系列芯片的使用方式都有了一定的了解&#xff0c;然后需要构建基于GMSSL的文件系统&#xff0c;此文才对您有意义&#xff1b; 2&#xff0c;若您对方寸微电子的T690芯片不了解&#xff0c;但想进一步了解它&#xff…

YOLOv8-Cls推理详解及部署实现

目录 前言一、YOLOv8-Cls推理(Python)1. YOLOv8-Cls预测2. YOLOv8-Cls预处理3. YOLOv8-Cls推理 二、YOLOv8-Cls推理(C)1. ONNX导出2. YOLOv8-Cls预处理3. YOLOv8-Cls推理 三、YOLOv8-Cls部署1. 源码下载2. 环境配置2.1 配置CMakeLists.txt2.2 配置Makefile 3. ONNX导出4. 源码修…

GoLong的学习之路(二十一)进阶,语法之并发(go最重要的特点)(协程的主要用法)

并发编程在当前软件领域是一个非常重要的概念&#xff0c;随着CPU等硬件的发展&#xff0c;我们无一例外的想让我们的程序运行的快一点、再快一点。Go语言在语言层面天生支持并发&#xff0c;充分利用现代CPU的多核优势&#xff0c;这也是Go语言能够大范围流行的一个很重要的原…

云闪付支付接口的技术实现方式

&#xff08;一&#xff09;整体框架。      云闪付的整体架构如图 1 所示&#xff0c;总体与原有的支付清算体系相同&#xff0c;只是增加了云端支付平台、移动应用平台和移动应用。云端支付平台主要对移动应用端的限制密钥进行更新和管理&#xff0c;同时对云端支付账户进…

k8s存储卷

目录 1、emptyDir存储卷 2、hostPath存储卷 3、nfs共享存储卷 4、PVC 和 PV 4.1 PV和PVC之间的相互作用遵循这个生命周期&#xff1a; 4.2 PV的状态 4.3 一个PV从创建到销毁的具体流程如下&#xff1a; 静态PVC&#xff1a; 动态PVC 1、emptyDir存储卷 当Pod被分配给节…