【机器学习3】有监督学习经典分类算法

1 支持向量机

在现实世界的机器学习领域, SVM涵盖了各个方面的知识, 也是面试题目中常见的基础模型。
在这里插入图片描述
SVM的分类结果仅依赖于支持向量,对于任意线性可分的两组点,它
们在SVM分类的超平面上的投影都是线性不可分的。

2逻辑回归

2.1逻辑回归与线性回归

逻辑回归处理的是分类问题, 线性回归处理的是回归问题, 这是两者的最本质的区别。 逻辑回归中给定自变量和超参数后, 得到因变量的期望, 并基于此期望来处理预测分类问题。 逻辑回归与线性回归最大的区别, 即逻辑回归中的因变量为离散的,而线性回归中的因变量是连续的。 并且在自变量x与超参数θ确定的情况下, 逻辑回归可以看作广义线性模型(Generalized Linear Models)在因变量y服从二元分布时的一个特殊情况; 而使用最小二乘法求解线性回归时, 我们认为因变量y服从正态分布。
逻辑回归和线性回归的相同之处二者都使用了极大似然估计来对训练样本进行建模,另外, 二者在求解超参数的过程中, 都可以使用梯度下降的方法。

2.2 逻辑回归处理多标签的分类

如果一个样本只对应于一个标签, 我们可以假设每个样本属于不同标签的概率服从于几何分布, 使用多项逻辑回归(Softmax Regression)来进行分类:
在这里插入图片描述
一般来说, 多项逻辑回归具有参数冗余的特点, 即同时加减一个向量后预测结果不变。 特别地, 当类别数为2时:

在这里插入图片描述
利用参数冗余的特点, 我们将所有参数减去θ1, 式子变为:

在这里插入图片描述
整理后的式子与逻辑回归一致。 因此, 多项逻辑回归实际上是二分类逻辑回归在多标签分类下的一种拓展。
当存在样本可能属于多个标签的情况时, 我们可以训练k个二分类的逻辑回归分类器。 第i个分类器用以区分每个样本是否可以归为第i类, 训练该分类器时, 需要把标签重新整理为“第i类标签”与“非第i类标签”两类。

3决策树

决策树的生成包含了特征选择、 树的构造、 树的剪枝三个过程。将决策树应用集成学习的思想可以得到随机森林、 梯度提升决策树等模型。

3.1几种常用的决策树对比

常用的决策树算法有ID3、 C4.5、 CART

3.1.1 ID3最大信息增益

对于样本集合D, 类别数为K, 数据集D的经验熵表示为:
在这里插入图片描述
其中Ck是样本集合D中属于第k类的样本子集, |Ck|表示该子集的元素个数, |D|表示样本集合的元素个数。
计算某个特征A对于数据集D的经验条件熵H(D|A)为:

在这里插入图片描述
Di表示D中特征A取第i个值的样本子集, Dik表示Di中属于第k类的样本子集。
信息增益g(D,A)可以表示为二者之差, 可得:
在这里插入图片描述

3.1.2 C4.5最大信息增益比

特征A对于数据集D的信息增益比定义为:
在这里插入图片描述在这里插入图片描述

3.1.3 CART最大基尼指数( Gini)

Gini描述的是数据的纯度, 与信息熵含义类似。

在这里插入图片描述
CART在每一次迭代中选择基尼指数最小的特征及其对应的切分点进行分类。但与ID3、 C4.5不同的是, CART是一颗二叉树, 采用二元切割法, 每一步将数据按特征A的取值切成两份, 分别进入左右子树。 特征A的Gini指数定义为:
在这里插入图片描述
通过对比三种决策树的构造准则, 我们不难总结三者之间的差异。

区别ID3C4.5CART
评价标准信息增益信息增益比基尼指数
样本类型离散型变量连续型变量连续型变量
应用角度分类分类分类/回归
缺失值对样本特征缺失值敏感对缺失值进行不同方式的处理对缺失值进行不同方式的处理
实现在每个结点上产生出多叉分支,每个特征在层级之间不会复用在每个结点上产生出多叉分支,每个特征在层级之间不会复用每个结点只会产生两个分支,且每个特征可以被重复使用
优化过程通过剪枝来权衡树的准确性与泛化能力通过剪枝来权衡树的准确性与泛化能力直接利用全部数据发现所有可能的树结构进行对比

3.2不同剪枝方法的区别和联系

一棵完全生长的决策树会面临一个很严重的问题, 即过拟合。 需要对决策树进行剪枝, 剪掉一些枝叶, 提升模型的泛化能力。决策树的剪枝通常有两种方法, 预剪枝(Pre-Pruning) 和后剪枝(PostPruning)

3.2.1 预剪枝

预剪枝, 即在生成决策树的过程中提前停止树的增长。
预剪枝的核心思想是在树中结点进行扩展之前, 先计算当前的划分是否能带来模型泛化能力的提升, 如果不能, 则不再继续生长子树。 预剪枝对于何时停止决策树的生长有以下几种方法。
在这里插入图片描述

3.2.2后剪枝

后剪枝, 是在已生成的过拟合决策树上进行剪枝, 得到简化版的剪枝决策树。
后剪枝的核心思想是让算法生成一棵完全生长的决策树, 然后从最底层向上计算是否剪枝。剪枝过程将子树删除, 用一个叶子结点替代, 该结点的类别同样按照多数投票的原则进行判断。
常见的后剪枝方法包括错误率降低剪枝(Reduced Error Pruning, REP) 、 悲
观剪枝(Pessimistic Error Pruning, PEP) 、 代价复杂度剪枝(Cost Complexity Pruning, CCP) 、 最小误差剪枝(Minimum Error Pruning, MEP) 、 CVP(Critical Value Pruning) 、 OPP(Optimal Pruning) 等方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/184550.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python--- lstrip()--删除字符串两边的空白字符、rstrip()--删除字符串左边的空白字符、strip()--删除字符串右边的空白字符

strip() 方法主要作用:删除字符串两边的空白字符(如空格) lstrip() 方法 left strip,作用:只删除字符串左边的空白字符 rstrip() 方法,作用:只删除字符串右边的空白字符 strip 英 /strɪp…

k8s 目录和文件挂载到宿主机

k8s生产中常用的volumes挂载方式有:hostPath、pv,pvc、nfs 1.hostPath挂载 hostPath是将主机节点文件系统上的文件或目录挂载到Pod 中,同时pod中的目录或者文件也会实时存在宿主机上,如果pod删除,hostpath中的文…

android studio 编译Telegram源码经验总结(2023-11-05)

前言 Telegram是一款强大的端到端加密IM,专注于安全性和速度,支持Android/IOS/Windows/macOS等平台,功能丰富,运行流畅,免费开源,代码具有学习和研究意义。 一、android telegram源码下载地址: …

农林牧数据可视化监控平台 | 智慧农垦

数字农业是一种现代农业方式,它将信息作为农业生产的重要元素,并利用现代信息技术进行农业生产过程的实时可视化、数字化设计和信息化管理。能将信息技术与农业生产的各个环节有机融合,对于改造传统农业和改变农业生产方式具有重要意义。 图扑…

在HTML单页面中,使用Bootstrap框架的多选框如何提交数据

1.引入Bootstrap CSS和JavaScript文件&#xff1a;确保在HTML页面的标签内引入Bootstrap的CSS和JavaScript文件。可以使用CDN链接或者下载本地文件。 <link rel"stylesheet" href"https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css&q…

git命令行操作

git remote update origin --prune 更新本地的git分支保持和远程分支一致 git clone -b develop XXX 拉取某个分支的代码 1、创建一个空文件夹&#xff0c;在其中打开Git Bash Here&#xff0c;输入&#xff1a; git clone 刚刚复制的粘贴过来&#xff0c;回车 2、打开你拉下…

IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -Maven核心概念

一.Maven的POM POM全称&#xff1a;Project Object Model【项目对象模型】&#xff0c;将项目封装为对象模型&#xff0c;便于使用Maven管理【构建】项目 pom.xml常用标签 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://m…

OAuth2.0双令牌

OAuth 2.0是一种基于令牌的身份验证和授权协议&#xff0c;它允许用户授权第三方应用程序访问他们的资源&#xff0c;而不必共享他们的凭据。 在OAuth 2.0中&#xff0c;通常会使用两种类型的令牌&#xff1a;访问令牌和刷新令牌。访问令牌是用于访问资源的令牌&#xff0c;可…

MySQL之表的约束

目录 表的约束1.空属性2.默认值3.列描述4.zerofill5.主键6.自增长7.唯一键8.外键 表的约束 真正约束字段的是数据类型&#xff0c;数据类型规定了数据的用法、范围…假如我们没有按照其规定的约束&#xff0c;那么数据将插入不成功但是数据类型约束很单一&#xff0c;需要有一…

pytorch之relu激活函数

目录 1、relu 2、relu6 3、leaky_relu 4、ELU 5、SELU 6、PReLU 1、relu ReLU&#xff08;Rectified Linear Unit&#xff09;是一种常用的神经网络激活函数&#xff0c;它在PyTorch中被广泛使用。ReLU函数接受一个输入值&#xff0c;如果该值大于零&#xff0c;则返回该…

NetworkManager 图形化配置 bond

1、在桌面右下角找到网络连接标识&#xff0c;鼠标右击&#xff0c;选择编辑连接&#xff0c;如下图 注意&#xff1a;此次示例使用 ens37 和 ens38 两张网卡组成 bond。在配置 bond 前为了网 络稳定如果子网卡已有网络连接的建议先删除 bond 子网卡的网络连接。 2、单击按钮&a…

VSCode设置中文语言界面(VScode设置其他语言界面)

一、下载中文插件 二、修改配置 1、使用快捷键 CtrlShiftP 显示出搜索框 2、然后输入 configure display language 3、点击 (中文简体) 需要修改的语言配置 三、重启 四、可能出现的问题 1、如果configure display language已经是中文配置&#xff0c;界面仍是英文 解决&a…

使用R语言构建HTTP爬虫:IP管理与策略

目录 摘要 一、HTTP爬虫与IP管理概述 二、使用R语言进行IP管理 三、爬虫的伦理与合规性 四、注意事项 结论 摘要 本文深入探讨了使用R语言构建HTTP爬虫时如何有效管理IP地址。由于网络爬虫高频、大量的请求可能导致IP被封禁&#xff0c;因此合理的IP管理策略显得尤为重要…

吴恩达《机器学习》5-6:向量化

在深度学习和数值计算中&#xff0c;效率和性能是至关重要的。一个有效的方法是使用向量化技术&#xff0c;它可以显著提高计算速度&#xff0c;减少代码的复杂性。接下来将介绍向量化的概念以及如何在不同编程语言和工具中应用它&#xff0c;包括 Octave、MATLAB、Python、Num…

【Java初阶习题】 -- 类和对象

目录 1.局部变量必须先初始化才能使用2. this的两种用法3. import语句不能导入一个指定的包4.代码块的执行顺序5.静态变量的调用6 . 现有一个Data类&#xff0c;内部定义了属性x和y&#xff0c;在main方法中实例化了Data类&#xff0c;并计算了data对象中x和y的和。 1.局部变量…

怎样在iOS手机上进行自动化测试

Airtest支持iOS自动化测试&#xff0c;在Mac上为iOS手机部署iOS-Tagent之后&#xff0c;就可以使用AirtestIDE连接设备&#xff0c;像连接安卓设备一样&#xff0c;实时投影、控制手机。iOS测试不仅限于真机测试&#xff0c;iOS模拟器也可以进行。Mac端上部署完成后还可以提供给…

mediapipe流水线分析 二

目标检测 Graph 一 流水线上游输入处理 1 TfLiteConverterCalculator 将输入的数据转换成tensorflow api 支持的Tensor TfLiteTensor 并初始化相关输入输出节点 &#xff0c;该类的业务主要通过 interpreter std::unique_ptrtflite::Interpreter interpreter_ nullptr; 实现…

js原型链

什么叫原型链 原型链是js中的核心&#xff0c;原型链将各个属性链接起来&#xff0c;在原型链上面定义&#xff0c;原型链上的其他属性能够使用&#xff0c;原型链就是保证继承 原型链区分 原型链分为显式原型和隐式原型 显式原型&#xff1a;只有函数和构建函数才有显式原型…

Spark 新特性+核心回顾

Spark 新特性核心 本文来自 B站 黑马程序员 - Spark教程 &#xff1a;原地址 1. 掌握Spark的Shuffle流程 1.1 Spark Shuffle Map和Reduce 在Shuffle过程中&#xff0c;提供数据的称之为Map端&#xff08;Shuffle Write&#xff09;接收数据的称之为Reduce端&#xff08;Sh…

人工智能(AI)是一种快速发展的技术,其未来发展前景非常广阔。

人工智能&#xff08;AI&#xff09;是一种快速发展的技术&#xff0c;其未来发展前景非常广阔。以下是一些关于AI未来的可能发展方向和就业前景的详细说明&#xff1a; 1.机器学习工程师&#xff1a;机器学习是AI的核心技术之一&#xff0c;它涉及到从数据中自动学习模式并进…