基于斑马算法的无人机航迹规划-附代码

基于斑马算法的无人机航迹规划

文章目录

  • 基于斑马算法的无人机航迹规划
    • 1.斑马搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用斑马算法来优化无人机航迹规划。

1.斑马搜索算法

斑马算法原理请参考:https://blog.csdn.net/u011835903/article/details/130565746

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得斑马搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用斑马算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,斑马算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/186722.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 构建并运行 python项目

此处不重述docker安装及基本命令,可参考另一篇文章centos7 安装 docker_centos7 docker network rm-CSDN博客文章浏览阅读111次。1、 1.1 docker 官网 Empowering App Development for Developers | DockerLearn how Docker helps developers bring their ideas to …

【文献分享】NASA JPL团队CoSTAR一大力作:直接激光雷达里程计:利用密集点云快速定位

论文题目:Direct LiDAR Odometry: Fast Localization With Dense Point Clouds 中文题目:直接激光雷达里程计:利用密集点云快速定位 作者:Kenny Chen, Brett T.Lopez, Ali-akbar Agha-mohammadi 论文链接:https://arxiv.org/pd…

C语言求解:有n个人围成一圈,顺序排号。从第一个人开始报数(从1到3报数),凡报到3的人退出圈子,问最后留下的是原来第几号的那位(约瑟夫问题)

完整代码&#xff1a; /* 有n个人围成一圈&#xff0c;顺序排号。从第一个人开始报数&#xff08;从1到3报数&#xff09;&#xff0c;凡报到3的人 退出圈子&#xff0c;问最后留下的是原来第几号的那位*/ #include<stdio.h>//约瑟夫问题 //递推关系f(n)(f(n-1)2)\mod n…

为什么说软文推广中了解用户是关键?

数字化时代下软文成为众多企业推广品牌的方式之一&#xff0c;所谓软文&#xff0c;就是指以向用户提供信息&#xff0c;并将产品隐含在信息中的柔性手段。 想要使软文效果明显&#xff0c;就必须深入了解用户&#xff0c;把握其需求、兴趣和行为特点&#xff0c;这也是今天媒…

【开源三方库】Easyui:基于OpenAtom OpenHarmony ArkUI深度定制的组件框架

万冬阳 公司&#xff1a;中国科学院软件所 小组&#xff1a;知识体系工作组 简介 Easyui是一套基于ArkTS语言开发的轻量、可靠的移动端组件库&#xff0c;它是对OpenAtom OpenHarmony&#xff08;以下简称“OpenHarmony”&#xff09; ArkUI进行深度定制的组件框架。Easyui可扩…

KaiwuDB x 奇瑞超级工厂 | 汽车行业能源管理平台成功实践

随着碳达峰、碳中和战略的逐步深化&#xff0c;我国正经历着广泛而深刻的经济社会系统性变革。其中&#xff0c;工业制造是推进能源绿色低碳发展的重要战场&#xff0c;通过数字化转型助推工业制造能源管理向绿色低碳发展&#xff0c;是“双碳”目标下工业制造业转型升级面临的…

一招解密网络流量瓶颈!

前言 我们曾介绍过观测云提供全面的基础设施监测方案&#xff08;参见《全方位监控基础设施&#xff0c;坚实守护您的业务稳定&#xff01;》&#xff09;&#xff0c;能够高效全面地帮助您实时观测所有的基础设施对象及云产品等&#xff0c;赋能您的业务稳定发展。今天我们将…

前端训练营:1v1私教,帮你拿到满意的offer

Hello&#xff0c;大家好&#xff0c;我是 Sunday。 熟悉我的小伙伴都知道&#xff0c;我最近这几年一直在做前端教育相关的工作。因为这类工作的原因&#xff0c;让我深刻的感受到这几年整个互联网行业的变化。 大量的公司裁员&#xff0c;导致找工作的人急速增加&#xff0…

Spring Cloud学习(三)【Nacos注册中心】

文章目录 认识 NacosNacos 安装使用 Nacos 完成服务注册Nacos 服务分级存储模型集群负载均衡策略 NacosRule根据权重负载均衡Nacos 环境隔离Nacos 和 Eureka 的区别 认识 Nacos Nacos 是阿里巴巴的产品&#xff0c;现在是 SpringCloud 中的一个组件。相比Eureka 功能更加丰富&…

视频电影和字幕如何合并?

我们在看一些国外的电影或者电视剧有时是没有字幕文件的&#xff0c;而对于普通人来说&#xff0c;没有字幕意味着我们无法看懂电影的剧情&#xff0c;好不容易获得的视频资源没有意义了&#xff0c;这种情况该怎么办呢&#xff1f; 其实这种情况完全不用怕&#xff0c;要知道…

解压游戏资源,导出游戏模型

游戏中有很多好看的角色&#xff0c;地图等等资源。 你有没有想过&#xff0c;把他们导出到自己的游戏中进行魔改又或则玩换肤等操作呢&#xff1f; 相信很多同学都喜欢拳皇中的角色&#xff0c; 那么我们今天就拿拳皇15举例子&#xff0c;导出他的资源。 首先要先安装好这个…

JAVA将List转成Tree树形结构数据和深度优先遍历

引言&#xff1a; 在日常开发中&#xff0c;我们经常会遇到需要将数据库中返回的数据转成树形结构的数据返回&#xff0c;或者需要对转为树结构后的数据绑定层级关系再返回&#xff0c;比如需要统计当前节点下有多少个节点等&#xff0c;因此我们需要封装一个ListToTree的工具类…

数据库 高阶语句

目录 数据库 高阶语句 使用select 语句&#xff0c;用order by来对进行排序 区间判断查询和去重查询 如何对结果进行分组查询group by语句 limit 限制输出的结果记录&#xff0c;查看表中的指定行 通配符 设置别名&#xff1a;alias 简写就是 as 使用select 语句&#x…

虚幻引擎:如何进行关卡切换?

一丶非无缝切换 在切换的时候会先断开连接,等创建好后才会链接,造成体验差 蓝图中用到的节点是 Execute Console Command 二丶无缝切换 链接的时候不会断开连接,中间不会出现卡顿,携带数据转换地图 1.需要在gamemode里面开启无缝漫游,开启之后使用上面的切换方式就可以做到无缝…

web3 前端dapp从redux过滤出 (我创建与别人创建)正在执行的订单 并展示在Table上

上文 web3 从redux中拿出所有已完成订单 并渲染到对应的Table列表中 我们从redux中 取出并渲染了 已完成的订单 那么 我们继续 万里长征 就快看到尽头了呀 我们先起一下环境 ganache 终端输入 ganache -d然后 登一下 MetaMask 然后 打开我们的项目 发布一下合约 truffle mig…

用Go实现网络流量解析和行为检测引擎

1.前言 最近有个在学校读书的迷弟问我:大德德, 有没有这么一款软件, 能够批量读取多个抓包文件,并把我想要的数据呈现出来, 比如:源IP、目的IP、源mac地址、目的mac地址等等。我说&#xff1a;“这样的软件你要认真找真能找出不少开源软件, 但毕竟没有你自己的灵魂在里面,要不…

如何在Android平板上远程连接Ubuntu服务器code-server进行代码开发?

文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机&#xff0c;Ubuntu或者centos都可以&#xff0c;这里以VMwhere ubuntu系统为例 下载code serve…

解析虚拟文件系统的调用

Linux 可以支持多达数十种不同的文件系统。它们的实现各不相同&#xff0c;因此 Linux 内核向用户空间提供了虚拟文件系统这个统一的接口&#xff0c;来对文件系统进行操作。它提供了常见的文件系统对象模型&#xff0c;例如 inode、directory entry、mount 等&#xff0c;以及…

关于 国产系统UOS系统Qt开发Tcp服务器外部连接无法连接上USO系统 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/134254817 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软…

【中间件篇-Redis缓存数据库03】Redis高级特性和应用(发布 订阅、Stream)

Redis高级特性和应用(发布 订阅、Stream) 发布和订阅 Redis提供了基于“发布/订阅”模式的消息机制&#xff0c;此种模式下&#xff0c;消息发布者和订阅者不进行直接通信,发布者客户端向指定的频道( channel)发布消息&#xff0c;订阅该频道的每个客户端都可以收到该消息。 …