我在Vscode学OpenCV 图像运算(权重、逻辑运算、掩码、位分解、数字水印)

文章目录

  • 权重 _ 要求两幅图像是相同大小的。
    • [ 1 ] 以数据说话
      • ( 1) 最终:
      • ( 2 )gamma _输出图像的标量值
    • [ 2 ] 图像的展现力
      • gamma并不等同于增加曝光度
        • ( 1 )gamma=100
        • ( 2 )gamma = -100
  • 逻辑运算
    • 【1】用 cv2.bitwise_and()函数来实现按位与运算
      • [ 1 ] 对比函数和逻辑运算符
        • (1)速度
        • (2)array展示
      • [ 2 ] 创造一个掩码
        • plt.subplot()是matplotlib库中的一个函数
        • masked = cv.bitwise_and(imgx, imgx, mask=mask)
    • 【2】用 cv2.bitwise_or()函数来实现按位或运算
    • 【3】cv2.bitwise_not()来实现按位取反操作
    • 【4】cv2.bitwise_xor()来实现按位异或运算
      • 可以用其简单的加密
  • 掩模(也被称作掩码)
  • 位平面分解
    • 【1】用途:
    • 【2】拆解一张照片 和 分解出权重
      • (1)可视化位平面的内容
      • (2)保留位平面的原始权重。
      • (3)区别点: plane = ((img >> i) & 1) * 【255或者(2**i)】它们的处理方式有所不同。
    • 【3】数字水印
        • (1)嵌入过程:将载体图像的第 0 个位平面替换为数字水印信息(一幅二值图像),将载体图像的最低有效位所构成的第 0 个位平面提取出来,得到数字水印信息
        • (2)实现
        • (3) 对比

权重 _ 要求两幅图像是相同大小的。

如果做的是普通的水印直接用水印就好了

再上一篇对于加法运算的了解,我们应该想想,在优先保留更多的图片有效信息的情况下,我们就应当对图像某一区域进行加法饱和或者模运算的限制,或者对某种类型和通道进行特殊限制。

要求

  1. 输入图像:需要两个输入图像,它们的大小和类型必须相同。

  2. 权重:每个输入图像都需要一个相应的权重。这些权重决定了每个像素从每个输入图像中获取的贡献。

  3. gamma校正:这是一个可选参数,用于调整输出图像的亮度。

dst = cv2.addWeighted(src1, alpha, src2, beta, gamma)
  • src1:第一个输入图像。
  • alpha:第一个图像的权重。
  • src2:第二个输入图像。
  • beta:第二个图像的权重。
  • gamma:一个添加到输出图像的标量值(必写项,不可省略,0也得在函数中标清)。

注意,alpha和beta的值通常在0到1之间,gamma通常设置为0或者。

[ 1 ] 以数据说话

用Jupyter notebook

如果你在cv.addweighted()函数中整数运算使用了浮点数权重,那么结果会被四舍五入到最接近的整数。

如果一个图像的权重大于另一个图像,那么在输出图像中,权重大的图像会更显眼。换句话说,权重大的图像对输出图像的影响更大。例如,如果你有两个图像 img1 和 img2,你可以使用 cv.addweighted(img1, 0.7,img2,0.3,0) 来创建一个新的图像,其中img1的内容会比img2的内容更显眼,因为 img1的权重(0.7)大于img2的权重(0.3) 。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimg1 = np.random.randint(0,255,(3,3),dtype=np.uint8)
img1

在这里插入图片描述

img2 = np.random.randint(0,255,(3,3),dtype=np.uint8)
img2

在这里插入图片描述

imgx=cv.addWeighted(img1,0.3,img2,0.7,0)
imgx

在这里插入图片描述

( 1) 最终:

如果你在cv.addweighted()函数中使用了浮点数权重,那么结果会被四舍五入到最接近的整数。
在这里插入图片描述

( 2 )gamma _输出图像的标量值

cv.addweighted()函数中,gamma是一个标量值,它被添加到最终的加权和中。这个函数的完整公式是: dst = src1*alpha + src2*beta +gaa

在这个公式中,src1和src2是输入图像,α和β是它们的权重,γ是一个标量的值。

gamma 的主要作用是调整输出图像的亮度。
如果 gamma 的值大于0,输出图像会变亮;
如果 gamma 的值小于0,输出图像会变暗;
如果 gamma 的值等于0,输出图像的亮度不变。

所以,你可以通过调整 gamma 的值来调整输出图像的亮度。

[ 2 ] 图像的展现力

gamma并不等同于增加曝光度

虽然增加 gamma 值可以使图像看起来更亮,但这并不等同于增加曝光度。
在摄影中,曝光度是指相机传感器接收到的光的量。增加曝光度通常意味着更长的快门速度或更大的光圈,使更多的光进入相机。

gamma值的调整更像是在图像已经被拍摄和处理之后,对图像的亮度进行后期调整。
增加gamma值会使所有的像素值变得更亮,但并不会改变图像的对比度或颜色平衡,这与增加曝光度的效果是不同的。
所以,虽然增加 gamma 值可以使图像看起来更亮,但这并不等同于增加曝光度。

( 1 )gamma=100

在这里插入图片描述

( 2 )gamma = -100

加粗样式

逻辑运算

在这里插入图片描述

【1】用 cv2.bitwise_and()函数来实现按位与运算

dst = cv2.bitwise_and( src1, src2[, mask]]

dst 表示与输入值具有同样大小的 array 输出值。
src1 表示第一个 array 或 scalar 类型的输入值。
src2 表示第二个 array 或 scalar 类型的输入值。
mask 表示可选操作掩码,8 位单通道 array。

按位与操作有如下特点:
(1)将任何数值 N 与数值 0 进行按位与操作,都会得到数值 0。
(2) 将任何数值 N(这里仅考虑 8 位值)与数值 255(8 位二进制数是 1111 1111)进行按位与操作,都会得到数值 N 本身

[ 1 ] 对比函数和逻辑运算符

(1)速度
import cv2
import numpy as np
import timeita = np.random.randint(0,255,(1000,1000),dtype=np.uint8)
b = np.zeros((1000,1000),dtype=np.uint8)
b[0:500,0:500] = 255
b[999,999] = 255start = timeit.default_timer()
c = cv2.bitwise_and(a,b)
end = timeit.default_timer()
print("cv2.bitwise_and time: ", end - start)start = timeit.default_timer()
d = a & b
end = timeit.default_timer()
print("& operation time: ", end - start)

在这里插入图片描述

(2)array展示
import cv2
import numpy as np
a=np.random.randint(0,255,(5,5),dtype=np.uint8)
b=np.zeros((5,5),dtype=np.uint8)
b[0:3,0:3]=255
b[4,4]=255
c=cv2.bitwise_and(a,b)
d=a&b
print("a=\n",a)
print("b=\n",b)
print("c=\n",c)
print("d=\n",d)

在这里插入图片描述

[ 2 ] 创造一个掩码

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 读取图像
imgx = cv.imread("Pic/test_img.jpg")# 创建一个掩码,大小和图像一样,类型为uint8,初始值全为255
mask = np.ones(imgx.shape[:2], dtype="uint8") * 255# 获取图像的中心坐标
h, w = imgx.shape[:2]
center_h, center_w = h // 2, w // 2# 将掩码的中心部分设置为0,创建一个小的黑色方块
size = 50  # 方块的大小
mask[center_h - size:center_h + size, center_w - size:center_w + size] = 0# 使用掩码
masked = cv.bitwise_and(imgx, imgx, mask=mask)# 显示原图和添加掩码后的图像
plt.subplot(1, 2, 1)
plt.imshow(cv.cvtColor(imgx, cv.COLOR_BGR2RGB))
plt.title('Original Image')plt.subplot(1, 2, 2)
plt.imshow(cv.cvtColor(masked, cv.COLOR_BGR2RGB))
plt.title('Masked Image')plt.show()

在这里插入图片描述

plt.subplot()是matplotlib库中的一个函数

函数的格式是plt.subplot(nrows, ncols, index)

  • nrows和ncols是子图的行数和列数。例如,nrows=1和ncols=2表示创建一个1行2列的子图网格。

  • index是子图的索引,用于指定当前活动的子图。索引从1开始,从左到右,从上到下。例如,index=1表示第一个子图,index=2表示第二个子图。

所以,plt.subplot(1, 2, 1)表示创建一个1行2列的子图网格,并选择第一个子图为当前活动的子图。你可以在这个子图上进行绘图操作,例如plt.plot()或plt.imshow()等。

masked = cv.bitwise_and(imgx, imgx, mask=mask)

bitwise_and函数对两个图像进行位运算的AND操作,mask参数指定了一个掩码,只有掩码为非零的部分才会被计算。

掩码(Mask)在图像处理中通常被用来指定对图像的某些部分进行操作,而忽略其他部分。

【2】用 cv2.bitwise_or()函数来实现按位或运算

dst = cv2.bitwise_or( src1, src2[, mask]] )
式中:
 dst 表示与输入值具有同样大小的 array 输出值。
 src1 表示第一个 array 或 scalar 类型的输入值。
 src2 表示第二个 array 或 scalar 类型的输入值。
 mask 表示可选操作掩码,8 位单通道 array 值

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 创建两个简单的图像
img1 = np.zeros((300, 300), dtype="uint8")
cv.rectangle(img1, (50, 50), (250, 250), 255, -1)
img2 = np.zeros((300, 300), dtype="uint8")
cv.circle(img2, (150, 150), 100, 255, -1)# 使用cv2.bitwise_or()函数将两个图像合并
bitwise_or = cv.bitwise_or(img1, img2)# 显示原图和合并后的图像
plt.subplot(1, 3, 1)
plt.imshow(img1, cmap='gray')
plt.title('Image 1')plt.subplot(1, 3, 2)
plt.imshow(img2, cmap='gray')
plt.title('Image 2')plt.subplot(1, 3, 3)
plt.imshow(bitwise_or, cmap='gray')
plt.title('Image after bitwise_or')plt.show()

在这里插入图片描述

【3】cv2.bitwise_not()来实现按位取反操作

dst = cv2.bitwise_not( src[, mask]] )

 dst 表示与输入值具有同样大小的 array 输出值。
 src 表示 array 类型的输入值。
 mask 表示可选操作掩码,8 位单通道 array 值

如果你有一个二进制数1101,按位取反后,它会变成0010。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 读取图像
imgx = cv.imread("Pic/test_img.jpg")# 对图像进行按位取反操作
imgx_not = cv.bitwise_not(imgx)# 再次对图像进行按位取反操作
imgx_not_not = cv.bitwise_not(imgx_not)# 显示原图、第一次取反后的图像和第二次取反后的图像
plt.subplot(1, 3, 1)
plt.imshow(cv.cvtColor(imgx, cv.COLOR_BGR2RGB))
plt.title('Original Image')plt.subplot(1, 3, 2)
plt.imshow(cv.cvtColor(imgx_not, cv.COLOR_BGR2RGB))
plt.title('Image after first bitwise_not')plt.subplot(1, 3, 3)
plt.imshow(cv.cvtColor(imgx_not_not, cv.COLOR_BGR2RGB))
plt.title('Image after second bitwise_not')plt.show()

在这里插入图片描述

【4】cv2.bitwise_xor()来实现按位异或运算

dst = cv2.bitwise_xor( src1, src2[, mask]] )

式中:
 dst 表示与输入值具有同样大小的 array 输出值。
 src1 表示第一个 array 或 scalar 类型的输入值。
 src2 表示第二个 array 或 scalar 类型的输入值。
 mask 表示可选操作掩码,8 位单通道 array 值

import cv2
import numpy as np
a=np.random.randint(0,255,(5,5),dtype=np.uint8)
b=np.random.randint(0,255,(5,5),dtype=np.uint8)
b[0:3,0:3]=255
b[4,4]=255
c=cv2.bitwise_xor(a,b)
d=a^bprint("a=\n",a)
print("b=\n",b)
print("c=\n",c)
print("d=\n",d)

在这里插入图片描述

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 创建两个简单的图像
img1 = np.zeros((300, 300), dtype="uint8")
cv.rectangle(img1, (50, 50), (250, 250), 255, -1)
img2 = np.zeros((300, 300), dtype="uint8")
cv.circle(img2, (150, 150), 100, 255, -1)# 使用cv2.bitwise_xor()函数将两个图像合并
bitwise_xor = cv.bitwise_xor(img1, img2)# 显示原图和合并后的图像
plt.subplot(1, 3, 1)
plt.imshow(img1, cmap='gray')
plt.title('Image 1')plt.subplot(1, 3, 2)
plt.imshow(img2, cmap='gray')
plt.title('Image 2')plt.subplot(1, 3, 3)
plt.imshow(bitwise_xor, cmap='gray')
plt.title('Image after bitwise_xor')plt.show()

在这里插入图片描述

可以用其简单的加密

找到合适的“密码”
一次异或操作为加密兔
二次拿着加密密码解码

掩模(也被称作掩码)

用于屏蔽模板的灰度图像

# ,操作只会在掩模值为非空的像素点上执行,并将其他像素点的值置为0。
计算结果=cv2.add(参数 1 , 参数 2 , 掩模)

cv2.add(img1, img2, mask=mask)函数将img1和img2中对应的像素值相加,结果存储在img3中。但是,只有mask中值为1的位置才会被计算,mask中值为0的位置将被忽略

import cv2
import numpy as np# 创建两个图像和一个掩码
img1 = np.ones((4,4), dtype=np.uint8) * 10
img2 = np.ones((4,4), dtype=np.uint8) * 20
mask = np.zeros((4,4), dtype=np.uint8)
mask[2:4, 2:4] = 1# 创建一个初始值全为66的图像
img3 = np.ones((4,4), dtype=np.uint8) * 66print("img1=\n", img1)
print("img2=\n", img2)
print("mask=\n", mask)
print("初始值 img3=\n", img3)# 使用掩码将img1和img2中对应的像素值相加,结果存储在img3中
img3 = cv2.add(img1, img2, mask=mask)print("求和后 img3=\n", img3)

在这里插入图片描述

位平面分解

位平面分解是一种将数字图像分解成多个二进制位平面的方法。在数字图像中,每个像素通常用几个字节表示,每个字节由8个二进制位组成。位平面分解通过将每个像素的二进制表示拆分成各个位(或者称为二进制平面),从而提取出图像中每个像素的不同位信息。

在这里插入图片描述

对于灰度图像,位平面分解通常用于灰度图像。每个像素只有一个8位的强度值,值是一个介于0和255之间的整数,位平面分解就是将这8位二进制数分解为8个单独的位,每个位平面都是一个二值图像,表示原图像中对应位的值。
在这里插入图片描述
在这里插入图片描述

对于彩色图像,每个像素有三个8位的强度值(通常是红色、绿色和蓝色通道)。值是一个包含三个介于0和255之间的整数的向量,你可以分别对这三个通道进行位平面分解,得到三组位平面。每组位平面都是一个二值图像,表示原图像中对应通道和对应位的值【你可以对每个通道分别进行位平面分解,但这会得到24个位平面,而不是8个。】

【1】用途:

在这里插入图片描述

【2】拆解一张照片 和 分解出权重

(1)可视化位平面的内容

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread('./img/c1c.jpg', 1)
if img is None:print('Failed to load image.')
else:# 进行位平面分解bit_planes = []for i in range(8):plane = ((img >> i) & 1) * 255bit_planes.append(plane)# 显示各个位平面的图像for i, plane in enumerate(bit_planes):plt.subplot(3, 4, i + 1)plt.imshow(plane[:,:,::-1], cmap='gray')plt.title(f'Bit plane {i}')plt.axis('off')# 显示所有位平面的和plt.subplot(3, 4, 9)plt.axis('off')plt.imshow(img[:,:,::-1])plt.title('Combined1')
plt.tight_layout()
plt.show()

在这里插入图片描述
在这里插入图片描述

(2)保留位平面的原始权重。

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread('./img/cc.jpg', 1)
if img is None:print('Failed to load image.')
else:# 进行位平面分解bit_planes = []for i in range(8):plane = ((img >> i) & 1) * (2**i)bit_planes.append(plane)# 复原位平面reconstructed = np.sum(bit_planes, axis=0).astype(np.uint8)# 显示各个位平面的图像for i, plane in enumerate(bit_planes):plt.subplot(3, 4, i + 1)plt.imshow(plane[:,:,::-1], cmap='gray')plt.title(f'Bit plane {i}')plt.axis('off')# 显示复原的图像plt.subplot(3, 4, 9)plt.axis('off')plt.imshow(reconstructed[:,:,::-1])plt.title('Reconstructed')plt.tight_layout()
plt.show()

在这里插入图片描述

在这里插入图片描述

(3)区别点: plane = ((img >> i) & 1) * 【255或者(2**i)】它们的处理方式有所不同。

plane = ((img >> i) & 1) * 255这行代码将图像的每个像素值右移i位,然后与1进行位与运算。这样可以得到每个像素值的第i位。然后,这个位值被乘以255,所以结果图像的每个像素值要么是0(如果原像素值的第i位是0),要么是255(如果原像素值的第i位是1)。这样可以清晰地看到每个位平面的内容。

plane = ((img >> i) & 1) * (2**i)这行代码的处理方式类似,但是它将位值乘以2**i而不是255。这意味着结果图像的每个像素值要么是0,要么是2**i。这样可以保留每个位平面的原始权重,但是可能会使得低位平面的内容难以看清,因为低位平面的像素值要么是0,要么是1、2、4等较小的数。

总的来说,plane = ((img >> i) & 1) * 255更适合于可视化位平面的内容,不适用于重新复原图片;而plane = ((img >> i) & 1) * (2**i)更适合于保留位平面的原始权重。

【3】数字水印

如果做的是普通的水印直接用前面提到的水印就好了

最低有效位(LSB)是二进制数的最低位,也就是第0位,用于表示二进制数的最小值。在图像处理中,最低有效位信息隐藏是一种技术,它将一个二值图像嵌入到载体图像的最低有效位中。

这种方法充分利用了最低有效位的特性。当我们将二值图像嵌入到最低有效位层时,对于载体图像来说,这些位的变化微弱到几乎无法被肉眼察觉。由于隐藏的二值图像位于最低有效位上,对载体图像的影响非常不明显,从而实现了较高程度的隐蔽性。

最低有效位信息隐藏技术在图像隐写领域得到广泛应用,可用于保护敏感信息的安全传输。然而需要注意的是,最低有效位信息隐藏是一种相对简单的隐藏方法,容易被一些隐写分析算法检测出来。因此,在实际应用中,可能需要采用更复杂的隐写技术来提高隐蔽性和安全性。

(1)嵌入过程:将载体图像的第 0 个位平面替换为数字水印信息(一幅二值图像),将载体图像的最低有效位所构成的第 0 个位平面提取出来,得到数字水印信息

(1)图像
在这里插入图片描述

在这里插入图片描述
“最低有效位”位平面
在这里插入图片描述
(2)水印处理
在灰度二值图像中,像素值只有 0 和 255 两种类型值,分别用来表示黑色和白色。可以将其中的 255 转换为 1,这样就得到了一幅二进制二值图像。。在二进制二值图像中,仅仅用一个比特位表示一个像素值,像素值只有 0 和 1 两种可能值。

在这里插入图片描述

在这里插入图片描述

(3)嵌入

由于信息的最低有效位对值的大小影响有限,因此,将载体图像最低有效位的值用水印信息替换后,载体图像像素的值并没有发生太大变化,人眼不足以看出区别,水印具有较高的隐
蔽性
在这里插入图片描述
在这里插入图片描述

(2)实现

将像素值对 2 取模(或者&1也可以判断),可以获取像素值的最低有效位。因此,可以通过让含水印载体图像对 2 取模的方式,获取图像的“最低有效位”位平面,提取到的位平面即为水印信息

在这里插入图片描述
在数字图像处理中,一个像素的值通常是一个范围在0到255之间的整数,这个整数被表示为8位二进制数。在这个二进制数中,最高位(最左边的位)是最重要的,它包含了大部分的像素信息。相反,最低位(最右边的位)是最不重要的,它只包含了一小部分的像素信息。

当我们需要在图像中隐藏某些信息(例如数字水印)时,通常会选择在最低有效位(LSB)中进行隐藏,因为这对原始图像的影响很小,几乎不可见。

我们会使用数字254(二进制表示为11111110)作为一个掩码,将像素值的最低位设置为0。这可以通过按位与运算来实现。按位与运算的规则是,如果两个位都是1,则结果为1,否则为0。因此,当一个像素值(范围在0到255之间的整数)与254进行按位与运算时,结果的最低位总是0,而其他位保持不变。这样就实现了将像素值的最低位设置为0的目的。

您可以将要隐藏的信息(如数字水印)嵌入到这个最低位中。这可以通过按位或运算来实现。按位或运算的规则是,如果两个位中至少有一个是1,则结果为1,否则为0。因此,将您的水印值(0或1)与已经被设置为0的像素值进行按位或运算,如果水印值为1,则结果的最低位为1,否则结果的最低位仍为0。这样就实现了将水印嵌入到像素值的最低位的目的。

数字254在这里的作用是作为一个掩码,用来清除像素值的最低位,以便在该位置上嵌入水印。

(3) 对比

(1)原图:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像
img = cv2.imread('./Pic/test_img.jpg', 1)
img

在这里插入图片描述
(2)数字水印后

import cv2
import numpy as np# 读取图像
img = cv2.imread('./Pic/test_img.jpg', 1)
if img is None:print('Failed to load image.')
else:# 创建一个简单的水印watermark = np.zeros_like(img)watermark[:50, :50] = 255  # 前50行和前50列的像素设置为255# 将原图像的最低有效位设置为0img = img & 0xFE  # 0xFE = 11111110# 将水印的最高有效位嵌入到原图像的最低有效位img = img | (watermark >> 7)# 显示带有水印的图像cv2.imshow('Watermarked Image', img)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

(3)生成元素值都是 254 的数组
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/189251.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql8安装和驱动jar包下载

方式一:基于docker安装 下拉镜像 docker pull mysql:8.0.21 启动镜像 docker run -p 3307:3306 --name mysql -e MYSQL_ROOT_PASSWORDhadoop -d mysql:8.0.21 启动成功后,进入容器内部拷贝配置文件,到宿主主机 docker cp mysql:/etc/mysql…

antlr4踩坑记录

一. syntax error: ‘<’ came as a complete surprise to me while matching alternative 参考这个issue&#xff0c;antlr版本必须得是4.6 下载链接&#xff1a;http://www.antlr.org/download/antlr-4.6-complete.jar 二.org.antlr.v4.analysis.LeftRecursiveRuleTrans…

Windows下Oracle安装和卸载

Windows下Oracle安装和卸载 1、Windows下安装Oracle 安装的版本&#xff1a;win32_11gR2_database。 解压之后双击setup.exe程序。 点击是。 配置安全更新&#xff0c;去掉复选框&#xff0c;点下一步。 提示未指定电子邮件地址&#xff0c;点是跳过。 配置安装选项&#xf…

【见缝插针】射击类游戏-微信小程序项目开发流程详解

还记得小时候玩过的见缝插针游戏吗&#xff0c;比一比看谁插得针比较多&#xff0c;可有趣了&#xff0c;当然了&#xff0c;通过它可以训练自己的手速反应&#xff0c;以及射击水平&#xff0c;把握时机&#xff0c;得分越高就越有成就感&#xff0c;相信小朋友们会喜欢它的&a…

css实现div倾斜效果

效果如下&#xff1a; <!DOCTYPE html> <html><head><meta charset"UTF-8"><title></title></head> <style> *{margin:0;padding: 0;} .box1{margin:30px 100px;width:100px;height:200px;background:blueviolet;} …

cmd打开idea

当我们用idea打开一个项目的时候&#xff0c;有时候这个项目目录是有的&#xff0c;但是用idea的open却找不到&#xff0c;有时候我要重新关闭窗口&#xff0c;再open好多次才有 于是我现在使用命令打开&#xff0c;先把idea安装路径的bin目录放在path里面 然后cd到项目路径&…

Unreal Engine 学习笔记 (3)—— 导入资源

1.导入FBX文件 打开系统文件管理器按下鼠标左键拖动fbx文件到UE编辑器中松开鼠标左键在弹出对话框FBX导入选项页面中&#xff0c;选择对应的骨骼 重定向骨骼 拖动UE4的walk_strafe_back.fbx文件到UE5编辑器中 在弹出的FBX导入选项对话框中选择UE4对应的骨骼 使用重定向资产…

什么是微服务自动化测试?

什么是微服务&#xff1f; 微服务 - 也称为微服务架构 - 是一种构建方式&#xff0c;它将应用程序构建为松散耦合服务的集合&#xff0c;具有完整的业务功能。微服务架构允许连续交付/部署大型复杂应用程序。本文将概述自动微服务测试工具和最佳实践。 它还使组织能够发展其技…

原生微信小程序学习之旅(一) -来简单的使用

文章目录 取消导航栏标头组件创建添加Component组件接收传入的数据 页面创建(Page)关于tabBartabBar自定义样式 轮播图轮播图指示点样式改变 微信小程序快速获取用户信息路由跳转获取url路径中的参数 bindtap(click)传参wx:if编写用户登陆关于默认工程目前的获取方法尝试一下服…

【Python】二维码和条形码的识别

我主要的问题就在于无法识别图片 注意事项&#xff1a; 1、从文件中加载图像的时候注意图片尽量用英文来命名&#xff0c;因为中文无法识别到图片 2、使用绝对地址的时候要用两个双斜杠&#xff0c;因为用一个会被识别为Unicode 转义&#xff0c;但是并没有后续的合法 Unico…

回归预测 | Matlab实现PCA-PLS主成分降维结合偏最小二乘回归预测

回归预测 | Matlab实现PCA-PLS主成分降维结合偏最小二乘回归预测 目录 回归预测 | Matlab实现PCA-PLS主成分降维结合偏最小二乘回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现PCA-PLS主成分降维结合偏小二乘回归预测&#xff08;完整源码和数据) 1.输…

机器学习——逻辑回归

目录 一、分类问题 监督学习的最主要类型 二分类 多分类 二、Sigmoid函数 三、逻辑回归求解 代价函数推导过程&#xff08;极大似然估计&#xff09;&#xff1a; 交叉熵损失函数 逻辑回归的代价函数 代价函数最小化——梯度下降&#xff1a; ​编辑 正则化 四、逻辑…

pyqt环境搭建

创建虚拟环境 # 用管理员身份运行 conda create --prefixE:\Python\envs\pyqt5stu python3.6 # 激活虚拟环境 conda activate E:\Python\envs\pyqt5stu # 退出虚拟环境 conda deactivate安装包 pip install PyQt5 -i https://pypi.douban.com/simple pip install PyQt5-tools…

关于maven读取settings.xml文件的优先级问题

今天在IDEA中配置maven的setting.xml文件路径指向的.m2路径下的setting_a.xml文件&#xff0c;同时&#xff0c;我的maven3.6.3也放在.m2中。 [1] .m2文件夹 [2] apache-maven-3.6.3文件夹 然后&#xff0c;在IDEA中打包发布时发现&#xff0c;无论如何都读取不到指定的settin…

Sectigo SSL

Sectigo&#xff08;前身为ComodoCA&#xff09;是全球在线安全解决方案提供商和全球最大的证书颁发机构。为了强调其在SSL产品之外的扩张&#xff0c;Comodo在2018年更名为Sectigo。新名称减少了市场混乱&#xff0c;标志着公司向创新的全方位网络安全解决方案提供商过渡。 S…

Python基础入门例程52-NP52 累加数与平均值(循环语句)

最近的博文&#xff1a; Python基础入门例程51-NP51 列表的最大与最小(循环语句)-CSDN博客 Python基础入门例程50-NP50 程序员节&#xff08;循环语句&#xff09;-CSDN博客 Python基础入门例程49-NP49 字符列表的长度-CSDN博客 目录 最近的博文&#xff1a; 描述 输入描…

FPGA运算

算数运算中&#xff0c;输入输出的负数全用补码来表示&#xff0c;例如用三位小数位来表示的定点小数a-1.625和b-1.375。那么原码分别为a6b‘101101, b6b101011, 补码分别是a6’b110011&#xff0c;b6‘b110101&#xff1b; 如果想在fpga中实现a*b&#xff0c;则需要将a和b用补…

MySQL:日志系统

目录 概述错误日志&#xff08;error log&#xff09;慢查询日志&#xff08;slow query log&#xff09;一般查询日志( general log )中继日志&#xff08;relay log&#xff09;Buffer Pool 缓存回滚日志&#xff08;undo log)概述undo log 作用undo log 的存储机制Undo log …

万能在线预约小程序系统源码 适合任何行业在线预约小程序+预约到店模式 带完整的搭建教程

大家好啊&#xff0c;源码小编又来给大家分享啦&#xff01;随着互联网的发展和普及&#xff0c;越来越多的服务行业开始使用在线预约系统以方便客户和服务管理。例如&#xff0c;美发店、健身房、餐厅等都可以通过在线预约系统提高服务效率&#xff0c;减少等待时间&#xff0…

计算机课设python项目matplotlib数据可视化分析代码以及数据文档+自动化selenium实现boss网站爬虫代码

这是一个数据分析可视化课程的结课作业设计&#xff0c;受人所托写的&#xff0c;现在分享出来&#xff0c;有需要的同学自取哈&#xff0c;以下是文件目录&#xff0c;包括数据分析和爬虫代码都有&#xff0c;下载下来当一个demo也还是不错的&#xff0c;这篇博客就是文档里的…