pytorch基础语法问题

这里写目录标题

  • pytorch基础语法问题
    • shape
    • torch.ones_like函数和torch.zeros_like函数
    • y.backward(torch.ones_like(x), retain_graph=True)
      • torch.autograd.backward
        • 参数grad_tensors: z.backward(torch.ones_like(x))
        • 来个复杂例子z.backward(torch.Tensor([[1., 0]])
        • 更复杂例子
        • 实际上,也可以通过 求均值 的形式将其转为标量
        • retain_graph=True参数
        • 在每次反向传播求导时,计算的梯度不会自动清零。如果进行多次迭代计算梯度而没有清零,那么梯度会在前一次的基础上叠加。需要使用 Tensor.grad.zero_()将梯度清零。x.grad.data.zero_()
        • 非叶子节点(见上一篇文章)的梯度会默认被释放掉,除非用 retain_grad()函数明确指明保留其梯度。
      • 一些援引
    • 矩阵相乘

pytorch基础语法问题

shape

import torch
# 创建一个形状为(2, 3)的张量
x = torch.Tensor([[1, 2, 3], [4, 5, 6],[1,1,1],[2,2,2]])
print(len(x.shape))
print(x.shape[0])
# 遍历张量中的元素
for i in range(x.shape[0]):for j in range(x.shape[1]):print(x[i, j])

len(x.shape),维数,一般为二维
x.shape[0]:行数
x.shape[1]: 列数

2
4
tensor(1.)
tensor(2.)
tensor(3.)
tensor(4.)
tensor(5.)
tensor(6.)
tensor(1.)
tensor(1.)
tensor(1.)
tensor(2.)
tensor(2.)
tensor(2.)进程已结束,退出代码0

torch.ones_like函数和torch.zeros_like函数

返回一个形状与input相同且值全为1的张量。torch.ones_like(input)相当于torch.ones(input.size, dtype=input.dtype,layout=input.layout,device=input.device)

input = torch.rand(4, 6)
print(input)
# 生成与input形状相同、元素全为1的张量
a = torch.ones_like(input)
print(a)
# 生成与input形状相同、元素全为0的张量
b = torch.zeros_like(input)
print(b)

在这里插入图片描述

z.backward(torch.ones_like(z))

z.backward(torch.ones_like(z))中的torch.ones_like(z)相当于在对z进
行求导时,对z中的元素进行了求和操作,从而将其转为一个标量。

y.backward(torch.ones_like(x), retain_graph=True)

y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))

torch.autograd.backward

x = torch.tensor(1.0, requires_grad=True)
y = torch.tensor(2.0, requires_grad=True)
z = x**2+y
z.backward()
print(z, x.grad, y.grad)>>> tensor(3., grad_fn=<AddBackward0>) tensor(2.) tensor(1.)

可以z是一个标量,当调用它的backward方法后会根据链式法则自动计算出叶子节点的梯度值。

但是 如果遇到z是一个向量或者是一个矩阵的情况,这个时候又该怎么计算梯度呢? 这种情况我们需要定义grad_tensor来计算矩阵的梯度。在介绍为什么使用之前我们先看一下源代码中backward的接口是如何定义的:

torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None)
  • tensor: 用于计算梯度的tensor。也就是说这两种方式是等价的:- torch.autograd.backward(z) == z.backward()
  • grad_tensors: 在计算矩阵的梯度时会用到。他其实也是一个tensor,shape一般需要和前面的tensor保持一致。
  • retain_graph: 通常在调用一次backward后,pytorch会自动把计算图销毁,所以要想对某个变量重复调用backward,则需要将该参数设置为True
  • create_graph: 当设置为True的时候可以用来计算更高阶的梯度
  • grad_variables: 这个官方说法是grad_variables’ is deprecated. Use - ‘grad_tensors’ instead.也就是说这个参数后面版本中应该会丢弃,直接使用grad_tensors就好了。

好了,参数大致作用都介绍了,下面我们看看pytorch为什么设计了grad_tensors这么一个参数,以及它有什么用呢?

参数grad_tensors: z.backward(torch.ones_like(x))

原则上,Pytorch不支持对张量的求导,即如果z是张量的话,需要先将其转为标量。

浏览了很多博客,给出的解决方案都是说在求导时,加一个torch.ones_like(z)的参数。

torch.ones_like(z)的作用。简而言之,torch.ones_like(z)相当于在对z进行求导时,对z中的元素进行求和操作,从而将其转为一个标量,便于后续的求导。

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward()>>> ...
RuntimeError: grad can be implicitly created only for scalar outputs

在这里插入图片描述

本质要得到 z对x求导, 但是已知的是X,Z ;一个矩阵对另一个矩阵求导,才能得到 每个z_partial 对x_partial的导数
其实,可以让sum(z_partial) 对于X求导,对xi 求偏导,就可以得到对应的z_partial
对x_partial的导数,,因为sum(z_partial) 对xi 求偏导,只有包含xi 的那一项在求导,其余与xi 无关的项
对xi求导为0

我们再仔细想想,对z求和不就是等价于z点乘一个一样维度的全为1的矩阵吗?即 [公式]
,而这个I也就是我们需要传入的grad_tensors参数。(点乘只是相对于一维向量而言的,对于矩阵或更高为的张量,可以看做是对每一个维度做点乘)

import torchx = torch.ones(2,3,requires_grad=True)
z = 2*x + 2
print(z)
print(z.sum())
# print(z.*torch.ones_like(x))
z.sum().backward()#或者z.backward(torch.ones_like(x)) 效果一样!
print(x.grad)'''
tensor([[4., 4., 4.],[4., 4., 4.]], grad_fn=<AddBackward0>)
tensor(24., grad_fn=<SumBackward0>)
tensor([[2., 2., 2.],[2., 2., 2.]])
'''
来个复杂例子z.backward(torch.Tensor([[1., 0]])
x = torch.tensor([2., 1.], requires_grad=True).view(1, 2)
y = torch.tensor([[1., 2.], [3., 4.]], requires_grad=True)z = torch.mm(x, y)
print(f"z:{z}")
z.backward(torch.Tensor([[1., 0]]), retain_graph=True)
print(f"x.grad: {x.grad}")
print(f"y.grad: {y.grad}")>>> z:tensor([[5., 8.]], grad_fn=<MmBackward>)
x.grad: tensor([[1., 3.]])
y.grad: tensor([[2., 0.],[1., 0.]])

在这里插入图片描述
说了这么多,grad_tensors的作用其实可以简单地理解成在求梯度时的权重,因为可能不同值的梯度对结果影响程度不同,所以pytorch弄了个这种接口,而没有固定为全是1。引用自知乎上的一个评论:如果从最后一个节点(总loss)来backward,这种实现(torch.sum(y*w))的意义就具体化为 multiple loss term with difference weights 这种需求了吧
内容来源

看到这里我不由得想,会不会有更复杂的例子呢,万一 输入参数太多多维,导致得到的z不只是一个一维向量,是多维的矩阵,那么就是sum起来或者是点乘一个和z尺寸相同的全1矩阵咯,反正,z是一定是要被处理成一个标量才能进行求导
原则上,Pytorch不支持对张量的求导,即如果z是张量的话,需要先将其转为标量。

更复杂例子
import torchx = torch.tensor(3.,requires_grad=True)
p = torch.ones(2,2,requires_grad=True)y = x*x
z = 2*y+2*p*p
# [
# [1,1],
# [1,1]
# ]
z.backward(torch.ones_like(z))
# # z = z.sum() # 与下面的torch.sum(z)作用相同,即z中所有元素的和。
# z = torch.sum(z)
# z.backward()
print(x.grad)
print(p.grad)
# print(y.grad) # backward()无法对非叶子节点求导# 知识点汇总:
# 原则上,Pytorch不支持对张量的求导,即如果z是张量的话,需要先将其转为标量。
# 就这个例子来说,z.backward(torch.ones_like(z))中的torch.ones_like(z)相当于在对z进行求导时,对z中的元素进行了求和操作,从而将其转为一个标量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

pp,张量相乘,对应位置的元素相乘,torch.mul()和 ,广播机制
z = 2y+2p*p,张量相加,广播机制,y这个标量被生生广播 扩维了,
当 z.sum().backward(),求和再对x求导,这个导数就大了不少(广播机制之后再求和,计算过程中标量y维数扩大了四倍,导致z对y的导数也扩大了四倍,夸大了,不合适

这么大,对x求导不太公正啊

实际上,也可以通过 求均值 的形式将其转为标量
z = z.mean() # z中所有元素的均值
z.backward()

在这里插入图片描述
该部分来自于此处

retain_graph=True参数

当我们计算梯度时,PyTorch会自动根据计算图反向传播梯度来更新模型参数。但是,当我们的计算图比较复杂,或者需要多次反向传播时,我们可能需要使用retain_graph参数来保存计算图。

retain_graph表示在进行反向传播计算梯度的时候,是否保留计算图。如果设置为True,则计算图将被保留,可以在之后的操作中进行多次反向传播计算。如果为False,则计算图将被清空。这是为了释放内存并防止不必要的计算。

pytorch进行一次backward之后,各个节点的值会清除,这样进行第二次backward会报错,因为虽然计算节点数值保存了,但是计算图结构被释放了,如果加上retain_graph==True后,可以再来一次backward。

import torch# 定义张量
x = torch.ones(2, 2, requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
print(x.grad)
# print(y) 全3矩阵
# print(z) #全27矩阵
# 计算梯度
out.backward(retain_graph=True)
print(x.grad)
# 再次计算梯度
z.backward(torch.ones_like(z))
print(x.grad)
None
tensor([[4.5000, 4.5000],[4.5000, 4.5000]])
tensor([[22.5000, 22.5000],[22.5000, 22.5000]])

在这里插入图片描述
在这里插入图片描述

z对x求导,在x为全1矩阵之处应该是18,但你会发现代码运行结果是22.5,很没有厘头,其实是因为 梯度累加
如何解决呢

x.grad.data.zero_()
在每次反向传播求导时,计算的梯度不会自动清零。如果进行多次迭代计算梯度而没有清零,那么梯度会在前一次的基础上叠加。需要使用 Tensor.grad.zero_()将梯度清零。x.grad.data.zero_()
import torch# 定义张量
x = torch.ones(2, 2, requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
print(x.grad)
# print(y) 全3矩阵
# print(z) #全27矩阵
# 计算梯度
out.backward(retain_graph=True)
print(x.grad)
x.grad.data.zero_()
# 再次计算梯度
z.backward(torch.ones_like(z))
print(x.grad)
None
tensor([[4.5000, 4.5000],[4.5000, 4.5000]])
tensor([[18., 18.],[18., 18.]])

再来个例子

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
# y=(x+w)*(w+1)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)# 反向传播求导数
# torch.autograd.backward(y)
y.backward(retain_graph=True)
print("w's grad: {}\\nx's grad: {}".format(w.grad, x.grad))
# print("a's grad: {}".format(a.grad))# 清零梯度
# w.grad.zero_()
# x.grad.zero_()# 第二次求导
y.backward()
print("w's grad: {}\\nx's grad: {}".format(w.grad, x.grad))

输出结果:

w's grad1: tensor([5.])
x's grad1: tensor([2.])
w's grad2: tensor([10.])
x's grad2: tensor([4.])

可以,如果注释掉 grad.zero() 相关的代码,那么第二次计算得到的导数就叠加到了第一次结果之上。

非叶子节点(见上一篇文章)的梯度会默认被释放掉,除非用 retain_grad()函数明确指明保留其梯度。
print("a's grad: {}".format(a.grad))

输出结果:

a’s grad: None
如这里如果我们输出非叶子节点 的梯度,显示为 None。

此段来自:backward()函数注意事项

一些援引

待看
pytorch中retain_graph==True的作用说明(详细例子+踩坑说明)

在这里插入图片描述
本来有个问题,啥叫释放,怎么释放,只要最后一次一次backward不设置retain_graph==True,就算释放
在这里插入图片描述
以上是这篇的意思
梯度会叠加,我看到有代码 在循环里面使用backward,也没用 retain_graph==True,计算树没被释放?还有,想必需要用到梯度叠加?

矩阵相乘

pytorch中的矩阵乘法操作(总结的好!简明精要
pytorch中的矩阵乘法操作:
torch.mm()
- 只适合于二维张量的矩阵乘法
- m x n, n x p -> m x p
torch.bmm()
- 只适合于三维张量的矩阵乘法,与torch.mm类似,但多了一个batch_size维度。
- b x m x n, b x n x p -> b x m x p

torch.mul()和*

  • ⭐ torch.mul()和*等价。
  • 张量对应位置元素相乘
  • 将输入张量input的每个元素与另一个向量or标量other相乘,返回一个新的张量out,两者维度需满足广播规则

torch.dot()
向量点积:两向量对应位置相乘然后全部相加。只能支持两个一维向量。
torch.mv(), @, torch.matmul()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190165.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1.0.0 IGP高级特性简要介绍(OSPF-下篇)

二、OSPF_精细的路由控制 1.OSPF数据库上限 简介 ​ OSPF技术要求同一个区域内的路由器保存着相同的LSDB信息。 ​ 但随着网络上路由数量不断增加&#xff0c;一些路由器由于系统资源有限&#xff0c;不能再承载如此多的路由信息&#xff0c;这种状态就被称为数据库超限&am…

STM32GPIO——上拉、下拉电阻

如上两个图所示&#xff0c;标号2都为上拉、下拉电阻部分&#xff0c;阻值约为30k~50k欧&#xff0c;通过对应开关进行控制&#xff0c;开关由寄存器控制。 当引脚外部的器件没有干扰引脚的电压时&#xff0c;即没有外部的上、下拉电压&#xff0c;引脚的电平由引脚内部上、下…

【机器学习】八、规则学习

知识图谱与基本概念 基本概念 规则学习定义&#xff1a;从训练数据中学习出一组能用于对未见示例进行判别的规则。 规则定义&#xff1a;规则一般是&#xff1a;语义明确、能描述数据分布所隐含的客观规律或领域概念。 逻辑规则定义&#xff1a;⊕←?1⋀?2⋀?3…⋀??⊕…

下载并安装DevEco Studio 3.1,初尝鸿蒙编程

摘自华为官网 DevEco Studio 3.1配套支持HarmonyOS 3.1版本及以上的应用及服务开发&#xff0c;提供了代码智能编辑、低代码开发、双向预览等功能&#xff0c;以及轻量构建工具DevEco Hvigor 、本地模拟器&#xff0c;持续提升应用及服务开发效率。 下载 官网下载地址 HUAWEI…

理解快速排序

理解快速排序 首先了解以下快速排序 快速排序&#xff08;QuickSort&#xff09;是一种常用的排序算法&#xff0c;属于比较排序算法的一种。它是由英国计算机科学家Tony Hoare于1960年提出的&#xff0c;是一种分而治之&#xff08;divide and conquer&#xff09;的算法。 …

模拟ASP.NET Core MVC设计与实现

前几天有人在我的《ASP.NET Core框架揭秘》读者群跟我留言说&#xff1a;“我最近在看ASP.NET Core MVC的源代码&#xff0c;发现整个系统太复杂&#xff0c;涉及的东西太多&#xff0c;完全找不到方向&#xff0c;你能不能按照《200行代码&#xff0c;7个对象——让你了解ASP.…

css实现进度条

预期样式 方法一 <script setup> import { ref } from "vue"; // import ScreenLeft from "./ScreenLeft/index.vue"; const width ref("76.5%"); </script><template>Screen<div class"progress-contain">…

详解数据仓库之拉链表(原理、设计以及在Hive中的实现)

最近发现一本好书&#xff0c;读完感觉讲的非常好&#xff0c;首先安利给大家&#xff0c;国内第一本系统讲解数据血缘的书&#xff01;点赞&#xff01;近几天也会安排朋友圈点赞赠书活动(ง•̀_•́)ง 0x00 前言 本文将会谈一谈在数据仓库中拉链表相关的内容&#xff0c;包…

ZYNQ_project:key_beep

通过按键控制蜂鸣器工作。 模块框图&#xff1a; 时序图&#xff1a; 代码&#xff1a; /*1位按键消抖 */ module key_filter (input wire sys_clk ,input wire sys_rst_n ,input wire key_in ,output …

springboot项目使用Swagger3

一、Swagger介绍 号称世界上最流行的Api框架&#xff1b;Restful Api 文档在线自动生成工具>Api文档与API定义同步更新直接运行&#xff0c;可以在在线测试API 接口支持多种语言&#xff1a;&#xff08;java&#xff0c;Php…&#xff09; 二、Swagger3 准备工作 1、在p…

VsCode 安装 GitHub Copilot插件 (最新)

##在线安装&#xff1a; 打开Vscode扩展商店&#xff0c;输入 "GitHub Copilot " ,选择下载人数最多的那个。&#xff08;这个是你写一部分代码或者注释&#xff0c;Ai自动帮你提示/补全代码&#xff09;,建议选择这个 注意下面有个和他类似的 "GitHub Copilo…

BMVC 23丨多模态CLIP:用于3D场景问答任务的对比视觉语言预训练

来源&#xff1a;投稿 作者&#xff1a;橡皮 编辑&#xff1a;学姐 论文链接&#xff1a;https://arxiv.org/abs/2306.02329 摘要&#xff1a; 训练模型将常识性语言知识和视觉概念从 2D 图像应用到 3D 场景理解是研究人员最近才开始探索的一个有前景的方向。然而&#xff0c…

APS、SAP解析BOM批量核对(我的APS项目三)

APS提供了解析BOM接口 SAP从CU50中解析了BOM 博主开发了一个程序&#xff0c;把两边的BOM数据拉到一起来比对&#xff0c;从最初的一个车型&#xff0c;增加到5个车型&#xff0c;最后成型是30个车型&#xff0c;几乎覆盖了F1、F2的全部车型。 并且程序还实现了消息提醒功能&…

Kotlin(十) 空指针检查、字符串内嵌表达式以及函数默认值

空指针检查 我们在之前的章节里&#xff0c;有定义一个Study的类&#xff0c;它有两个函数&#xff0c;一个doHomework(),一个readBooks()。然后我们定义个doStudy函数&#xff0c;来调用它们&#xff0c;代码如下&#xff1a; fun doStudy(study: Study) {study.doHomework(…

直播间自动发言机器人的运行分享,与开发需要到的技术分析

先来看实操成果&#xff0c;↑↑需要的同学可看我名字↖↖↖↖↖&#xff0c;或评论888无偿分享 一、引言 随着人工智能技术的不断发展&#xff0c;自动发言机器人已经成为了当今社交媒体领域的重要组成部分。它们能够自动化地发布内容、回复用户评论和消息&#xff0c;大大提高…

RE切入点:选择SLI,设定SLO

还是先来复习下上节课讲的“系统可用性”的两种计算方式&#xff0c;一种是从故障角度出发&#xff0c;以时长维度对系统进行稳定性评估&#xff1b;另一种是从成功请求占比角度出发&#xff0c;以请求维度对系统进行稳定性评估。同时&#xff0c;我们还讲到&#xff0c;在 SRE…

Django中简单的增删改查

用户列表展示 建立列表 views.py def userlist(request):return render(request,userlist.html) urls.py urlpatterns [path(admin/, admin.site.urls),path(userlist/, views.userlist), ]templates----userlist.html <!DOCTYPE html> <html lang"en">…

【开源项目】snakeflow流程引擎研究

项目地址 https://gitee.com/yuqs/snakerflow https://toscode.mulanos.cn/zc-libre/snakerflow-spring-boot-stater &#xff08;推荐&#xff09; https://github.com/snakerflow-starter/snakerflow-spring-boot-starter 常用API 部署流程 processId engine.process().de…

Adversarial Training Methods for Deep Learning: A Systematic Review

Adversarial Training Methods for Deep Learning: A Systematic Review----《面向深度学习的对抗训练方法:系统回顾》 摘要 通过快速梯度符号法(FGSM)、投影梯度下降法(PGD)和其他攻击算法&#xff0c;深度神经网络暴露在对抗攻击的风险下。对抗性训练是用来防御对抗性攻击威…

CoRL 2023 获奖论文公布,manipulation、强化学习等主题成热门

今年大模型及具身智能领域有了非常多的突破性进展&#xff0c;作为机器人学与机器学习交叉领域的全球顶级学术会议之一&#xff0c;CoRL也得到了更多的关注。 CoRL 是面向机器人学习的顶会&#xff0c;涵盖机器人学、机器学习和控制等多个主题&#xff0c;包括理论与应用。今年…