通讯协议学习之路(实践部分):SPI开发实践

通讯协议之路主要分为两部分,第一部分从理论上面讲解各类协议的通讯原理以及通讯格式,第二部分从具体运用上讲解各类通讯协议的具体应用方法。

后续文章会同时发表在个人博客(jason1016.club)、CSDN;视频会发布在bilibili(UID:399951374)

本文前缀:

通讯协议专栏:通讯协议_JASON丶LI的博客-CSDN博客

UART理论部分:

一、具体实践方案选择

同样的对于SPI也具有软件模拟和硬件外设配置的两种方案,此外也同样可以采用DMA转运数据、中断处理数据、轮询处理数据这三种方案。

软件SPI和硬件SPI之间的关系是,软件SPI是对硬件SPI的一种软件实现。软件SPI可以在没有硬件SPI模块的情况下实现SPI通信,但由于软件实现的限制,软件SPI的速度和可靠性可能不如硬件SPI。在一些资源受限的系统中,软件SPI是一种常用的替代方案。

软件模拟

按照SPI传输的时序与模式,通过对SCK、SS、MOSI、MISO这四个进行高低电平的时序配置是实现SPI通讯协议的模拟。

硬件模式

硬件模式直接配置单片机的SPI外设,使用其封装的库进行协议通信,不需要像软件一样一步步配置其时序,硬件SPI的工作状态主要通过读其SPI内部寄存器进行判断。其信息读取的4种模式按照参考下表。

NSS管脚与片选

NSS管脚及我们熟知的片选信号,作为主设备NSS管脚为高电平,从设备NSS管脚为低电平。当NSS管脚为低电平时,该spi设备被选中,可以和主设备进行通信。在stm32中,每个spi控制器的NSS信号引脚都具有两种功能,即输入和输出。所谓的输入就是NSS管脚的信号给自己。所谓的输出就是将NSS的信号送出去,给从机。

对于NSS的输入,又分为软件输入和硬件输入。

软件输入:

NSS分为内部管脚和外部管脚,通过设置spi_cr1寄存器的ssm位和ssi位都为1可以设置NSS管脚为软件输入模式且内部管脚提供的电平为高电平,其中SSM位为使能软件输入位。SSI位为设置内部管脚电平位。同理通过设置SSM和SSI位1和0则此时的NSS管脚为软件输入模式但内部管脚提供的电平为0。若从设备是一个其他的带有spi接口的芯片,并不能选择NSS管脚的方式,则可以有两种办法,一种是将NSS管脚直接接低电平。另一种就是通过主设备的任何一个gpio口去输出低电平选中从设备。

硬件输入:

主机接高电平,从机接低电平。

二、开发实践

标准库

软件SPI

SPI_Software.c
#include "stm32f10x.h"                  // Device header
#include "SPI_Software.h"void MySPI_W_SS(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);
}void MySPI_W_SCK(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)BitValue);
}void MySPI_W_MOSI(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)BitValue);
}uint8_t MySPI_R_MISO(void)
{return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);
}void MySPI_Init(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);MySPI_W_SS(1);MySPI_W_SCK(0);
}void MySPI_Start(void)
{MySPI_W_SS(0);
}void MySPI_Stop(void)
{MySPI_W_SS(1);
}uint8_t MySPI_SwapByte(uint8_t ByteSend)
{uint8_t i, ByteReceive = 0x00;for (i = 0; i < 8; i ++){MySPI_W_MOSI(ByteSend & (0x80 >> i));MySPI_W_SCK(1);if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}MySPI_W_SCK(0);}return ByteReceive;
}//SPI写应该Byte函数
void SPI_WriteByte(uint8_t Byte)
{uint8_t i;for(i = 0;i < 8;i++){//SCK从低电平到高电平(上升沿)时传输数据MySPI_W_SCK(0);if(Byte & 0x80)            //取出最高为,每次只能传输一个bit的数据{MySPI_W_MOSI(1);}else{MySPI_W_MOSI(0);}Byte <<= 1;MySPI_W_SCK(1);}MySPI_W_SCK(0);
}//SPI读一个Byte函数
uint8_t SPI_ReadByte(void)
{uint8_t i,Byte;MySPI_W_SCK(0);for(i = 0;i < 8;i++){MySPI_W_SCK(1);Byte <<= 1;if(MySPI_R_MISO()){Byte ++;}MySPI_W_SCK(0);}return Byte;
}
SPI_Software.h
#ifndef __SPISOFTWARE_H
#define __SPISOFTWARE_H#include "stm32f10x.h"                  // Device headervoid MySPI_W_SS(uint8_t BitValue);void MySPI_W_SCK(uint8_t BitValue);void MySPI_W_MOSI(uint8_t BitValue);uint8_t MySPI_R_MISO(void);void MySPI_Init(void);void SPI_WriteByte(uint8_t Byte);uint8_t SPI_ReadByte(void);#endif
SPI_Control.c
#include "SPI_Control.h"
#include "SPI_Software.h"//设备为:25AA010A//EEPROM开启写使能函数
void EEPROM_Write_ENABLE(void)
{//MySPI_W_SS(1);MySPI_W_SS(0);SPI_WriteByte(EEPROM_Address_ENABLE);MySPI_W_SS(1);
}//EEPROM关闭写使能函数
void EEPROM_Write_DISABLE(void)
{//MySPI_W_SS(1);MySPI_W_SS(0);SPI_WriteByte(EEPROM_Address_DISABLE);MySPI_W_SS(1);
}//从EEPROM中读取数据
uint8_t EEPROM_Read(uint8_t HW_Address,uint8_t SW_Address)
{uint8_t date = 0;//MySPI_W_SS(1);MySPI_W_SS(0);SPI_WriteByte(HW_Address);SPI_WriteByte(SW_Address);date = SPI_ReadByte();MySPI_W_SS(1);return date;
}//往EEPROM中写数据函数
void EEPROM_Write(uint8_t HW_Address,uint8_t SW_Address,uint8_t date)
{//HW_Address:EEPROM硬件地址//SW_Address: EEPROM的软件地址,即写出内存的地址uint8_t status = 0x01;        EEPROM_Write_ENABLE();                            //开启写使能//MySPI_W_SS(1);MySPI_W_SS(0);SPI_WriteByte(HW_Address);SPI_WriteByte(SW_Address);SPI_WriteByte(date);MySPI_W_SS(1);//读取EEPROM状态寄存器的最低为,当状态寄存器的最低位为1表示还未写完while(1){//MySPI_W_SS(1);MySPI_W_SS(0);SPI_WriteByte(EEPROM_Address_REGISTER);status = SPI_ReadByte();if((status & 0x01) == 0){break;}MySPI_W_SS(1);}EEPROM_Write_DISABLE();                        //关闭写使能
}
SPI_Control.h
#ifndef __SPICONTROL_H
#define __SPICONTROL_H#include "stm32f10x.h"                  // Device header#define EEPROM_Address_W 0x02                                //从指定地址开始写
#define EEPROM_Address_R 0X03                                //从指定地址开始读
#define EEPROM_Address_ENABLE 0x06                    //开启写使能命令
#define EEPROM_Address_DISABLE 0x04                    //关闭写使能命令
#define EEPROM_Address_REGISTER 0x05        //读取寄存器的状态(状态寄存器的值)void EEPROM_Write_ENABLE(void);void EEPROM_Write_DISABLE(void);uint8_t EEPROM_Read(uint8_t HW_Address,uint8_t SW_Address);void EEPROM_Write(uint8_t HW_Address,uint8_t SW_Address,uint8_t date);#endif
main.c
#include "stm32f10x.h"                  // Device header
#include <string.h>
#include "delay.h"
#include "sys.h"
#include "led.h"
#include "OLED.h"
#include "key.h"
#include "SPI_Control.h"
#include "SPI_Software.h"uint8_t RxData;
extern uint8_t num;int main(void)
{led_Init();Key_Init();OLED_Init();MySPI_Init();
//    num = EEPROM_Read(EEPROM_Address_R,0x00);while(1){OLED_ShowNum(1,1,num,2);EEPROM_Write(EEPROM_Address_W,0x00,num);led_turn(GPIOB, GPIO_Pin_0);Delay_ms(1000);}
}

硬件SPI

HAL库

模式设置:

  1. 有主机模式全双工/半双工——Full-Duplex Master
  2. 从机模式全双工/半双工——Ful-Duplex Slave
  3. 只接收主机模式/只接收从机模式——Half-Duplex Master
  4. 只发送主机模式——Half-Duplex Slave

SPI发送和接收轮询、中断、DMA三种模式操作函数

/* IO operation functions  ****************************************************/
/******* Blocking mode: Polling */
HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout);
HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);/******* Non-Blocking mode: Interrupt */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_EnableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_DisableListen_IT(I2C_HandleTypeDef *hi2c);
HAL_StatusTypeDef HAL_I2C_Master_Abort_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress);/******* Non-Blocking mode: DMA */
HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);
HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size);HAL_StatusTypeDef HAL_I2C_Master_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Master_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);
HAL_StatusTypeDef HAL_I2C_Slave_Seq_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t XferOptions);

 硬件模式:

SPI的proteus硬件模式仍在调试,后续会持续更新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190331.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【PG】PostgreSQL 预写日志(WAL)、checkpoint、LSN

目录 预写式日志&#xff08;WAL&#xff09; WAL概念 WAL的作用 WAL日志存放路径 WAL日志文件数量 WAL日志文件存储形式 WAL日志文件命名 WAL内容 检查点&#xff08;checkpoint&#xff09; 1 检查点概念 2 检查点作用 触发检查点 触发检查点之后数据库操作 设置合…

四入进博会,优衣库围绕科技可持续演绎“服装进化论”

11月5日&#xff0c;第六届中国国际进口博览会在上海拉开帷幕。这些年来&#xff0c;进博巨大的平台效应&#xff0c;使其成为各个行业头部品牌的秀场&#xff0c;也持续为消费者、产业链带来惊喜。 今年&#xff0c;也是全球服装界科技知名品牌——优衣库的第四次进博之旅。从…

Python爬虫爬取家纺数据并分析

因为时间的原因&#xff0c;没法写一个详细的教程&#xff0c;但是我可以提供一个基本的框架。你需要根据实际情况进行修改和扩展。以下是使用Python的requests库和BeautifulSoup库来爬取网页内容的基本步骤&#xff1a; # 导入所需的库 import requests from bs4 import Beaut…

2023/11/13JAVA学习

字节数组增大的同时,运行速度也会加快,但是大到一定程度就不行了 要想追加数据,要在低级流后面加true,高级流后面加不了 不是乱码,不是让人看的 保持数据一一对应 否则会报错 下载后,拷贝到一个包里,再 comment是你想添加的注释 txt文本也可

[算法训练营] 贪心算法专题(二)

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…

Day02_《MySQL索引与性能优化》

文章目录 一、SQL执行顺序二、索引简介1、关于索引2、索引的类型Btree 索引Btree 索引 三、Explain简介四、Explain 详解1、id2、select_type3、table4、type5、possible_keys6、key7、key_len8、ref9、rows10、Extra11、小案例 五、索引优化1、单表索引优化2、两表索引优化3、…

RT-DETR算法优化改进:一种新颖的动态稀疏注意力(BiLevelRoutingAttention) | CVPR2023

💡💡💡本文独家改进: 提出了一种新颖的动态稀疏注意力(BiLevelRoutingAttention),以实现更灵活的计算分配和内容感知,使其具备动态的查询感知稀疏性 1)代替RepC3进行使用; 2)BiLevelRoutingAttention直接作为注意力进行使用; 推荐指数:五星 RT-DETR魔术师专栏介…

leetcode刷题日记:118.Pascal‘s Triangle(杨辉三角)

118.Pascal’s Triangle(杨辉三角&#xff09; 题目给我们一个整数numRows表示杨辉三角形的行数&#xff0c;返回杨辉三角形的前numRows行&#xff0c;下面给出一个杨辉三角形看看它有哪些规律&#xff1b; 可以看出杨辉三角形的每一行的最左侧和最右侧的值都为1. 其余的第…

Marin说PCB之 PCB封装和原理图封装的藕断丝连

最近天气开始降温了&#xff0c;小编我不得不拿出珍藏多年的秋裤穿上了&#xff0c;就是走路不太方便&#xff0c;有点紧啊&#xff0c;可能是当时衣服尺码买小了吧&#xff0c;不可能是我吃胖了&#xff0c;这个绝对不可能。 话说小编我今年属实有点走霉运啊&#xff0c;下班和…

虚拟仪器软件结构VISA

1、什么是VISA VISA是虚拟仪器软件结构(Virtual Instrument Software Architectuere)的简称&#xff0c;是由VXI plug & play系统联盟所统一制定的I/O接口软件标准及其相关规范的总称。一般称这个I/O函数库为VISA库&#xff08;用于仪器编程的标准I/O函数库&#xff09;。…

Allegro层叠中的Etch Factor-铜皮的腐蚀因子如何计算

Allegro层叠中的Etch Factor-铜皮的腐蚀因子如何计算 在用Allegro进行PCB设计的时候,Cross-section中需要填入对应的信息,一般填入每层的厚度即可,如下图 当PCB需要进行仿真分析的时候,Etch-Factor这个值是必须要填写的,如下图 目前看到的都是90这个值,这是一个理论值。 …

app软件开发多少钱?功能会影响价格吗?

随着智能手机的普及&#xff0c;app开发市场日益繁荣&#xff0c;很多人都有开发app的梦想&#xff0c;但开发一款app需要多少钱呢?功能是否会影响价格?本文将为你揭开这个谜团。 一、app开发费用的影响因素 app开发费用受到多种因素的影响&#xff0c;例如开发难度、功能复…

Mysql Explain工具介绍

使用EXPLAIN关键字可以模拟优化器执行SQL语句&#xff0c;分析查询语句或是结构的性能瓶颈。 准备表 -- 课程表 CREATE TABLE class (id int(11) NOT NULL,name varchar(45) DEFAULT NULL,update_time datetime DEFAULT NULL,PRIMARY KEY (id)) ENGINEInnoDB DEFAULT CHARSET…

通过流量分析查看业务系统运行和访问情况

在当今数字化时代&#xff0c;应用程序的运行和访问情况对于企业和组织来说至关重要。无论是在线销售平台、移动应用还是企业内部系统&#xff0c;应用的性能和可用性直接影响着用户体验、业务流程以及组织效率。因此&#xff0c;对应用的运行和访问情况进行全面分析和评估&…

【01】Istio-1.17 部署

1.1 部署Istio控制平面 部署方法 istioctl istio的专用管理工具&#xff0c;支持定制控制平面和数据平面通过命令行的选项支持完整的IstioOperator API命令行各选项可用于单独设置&#xff0c;以及接收包含IstioOperator自定义资源(CR)的yaml文件 Istio Operator Istio相关的自…

MSSQL 配置ORACLE ​链接服务器

在有些场景&#xff0c;我们需要整合其他异构数据库的数据。我们可以使用代码去读取&#xff0c;经过处理后&#xff0c;再将数据保存到MSSQL数据库中。如果数据量比较大&#xff0c;但处理的逻辑并不复杂的情况下&#xff0c;这种方式就不是最好的办法。这时可以使用使用链接服…

笔尖笔帽检测1:笔尖笔帽检测数据集(含下载链接)

笔尖笔帽检测1&#xff1a;笔尖笔帽检测数据集(含下载链接) 目录 笔尖笔帽检测1&#xff1a;笔尖笔帽检测数据集(含下载链接) 1. 前言 2. 手笔检测数据集 &#xff08;1&#xff09;Hand-voc1 &#xff08;2&#xff09;Hand-voc2 &#xff08;3&#xff09;Hand-voc3 …

RT-DETR算法优化改进:Backbone改进 | HGBlock完美结合PPHGNetV2 RepConv

💡💡💡本文独家改进: PPHGNetV2助力RT-DETRHGBlock与PPHGNetV2 RepConv完美结合 推荐指数:五星 HGBlock_PPHGNetV2 | 亲测在多个数据集能够实现涨点 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375.html ✨✨✨魔改创新RT-DETR…

Windows 10 下使用Visual Studio 2017 编译CEF SDK

1.下载CEF SDK 由于需要跑在32位的机器&#xff0c;所以选择下载32位的SDKCEF Automated Builds 选择 Current Stable Build (Preferred) &#xff0c;这是当前稳定版本&#xff0c;CEF版本118 下载成功解压 2.下载编译工具 CMake 下载地址&#xff1a;CMake 配置CMake指向…

前后端交互案例,图书管理系统

先引入前端代码运行看看是否有问题 图书管理系统 定义前后端交互接口 1.登录 URL : /user/login 参数 : userName?&password? 响应 : true/false 2.图书列表展示 : URL : /book/getBookList 参数 : 无 响应 : List<BookInfo> 后端代码如下: package com…