不同优化器的应用

 简单用用,优化器具体参考

深度学习中的优化器原理(SGD,SGD+Momentum,Adagrad,RMSProp,Adam)_哔哩哔哩_bilibili

收藏版|史上最全机器学习优化器Optimizer汇总 - 知乎 (zhihu.com)

import numpy as np
import matplotlib.pyplot as plt
import torch
# prepare dataset
# x,y是矩阵,3行1列 也就是说总共有3个数据,每个数据只有1个特征
x_data = torch.tensor([[1.0], [2.0], [3.0]])y_data = torch.tensor([[2.0], [4.0], [6.0]])loss_SGD = []
loss_Adagrad = []
loss_Adam = []
loss_Adamax = []
loss_ASGD = []
loss_LBFGS = []
loss_RMSprop = []
loss_Rprop = []class LinearModel(torch.nn.Module):def __init__(self):super().__init__()self.Linear = torch.nn.Linear(1,1)def forward(self,x):y_pred = self.Linear(x)return y_predmodel = LinearModel()criterion = torch.nn.MSELoss(reduction='sum')
optimizer_SGD = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Adagrad = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Adam = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Adamax = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_ASGD = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_LBFGS = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_RMSprop = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Rprop = torch.optim.SGD(model.parameters(),lr=0.01)epoch_list = []# optimizer_SGD
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)epoch_list.append(epoch)loss_SGD.append(loss.data)optimizer_SGD.zero_grad()loss.backward()optimizer_SGD.step()# optimizer_Adagrad
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Adagrad.append(loss.data)optimizer_Adagrad.zero_grad()loss.backward()optimizer_Adagrad.step()# optimizer_Adam
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Adam.append(loss.data)optimizer_Adam.zero_grad()loss.backward()optimizer_Adam.step()# optimizer_Adamax
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Adamax.append(loss.data)optimizer_Adamax.zero_grad()loss.backward()optimizer_Adamax.step()# optimizer_ASGD
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_ASGD.append(loss.data)optimizer_ASGD.zero_grad()loss.backward()optimizer_ASGD.step()# optimizer_LBFGS
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_LBFGS.append(loss.data)optimizer_LBFGS.zero_grad()loss.backward()optimizer_LBFGS.step()# optimizer_RMSprop
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_RMSprop.append(loss.data)optimizer_RMSprop.zero_grad()loss.backward()optimizer_RMSprop.step()# optimizer_Rprop
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Rprop.append(loss.data)optimizer_Rprop.zero_grad()loss.backward()optimizer_Rprop.step()x_test = torch.tensor([4.0])
y_test = model(x_test)print('y_pred = ', y_test.data)plt.subplot(241)
plt.title("SGD")
plt.plot(epoch_list,loss_SGD)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(242)
plt.title("Adagrad")
plt.plot(epoch_list,loss_Adagrad)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(243)
plt.title("Adam")
plt.plot(epoch_list,loss_Adam)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(244)
plt.title("Adamax")
plt.plot(epoch_list,loss_Adamax)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(245)
plt.title("ASGD")
plt.plot(epoch_list,loss_ASGD)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(246)
plt.title("LBFGS")
plt.plot(epoch_list,loss_LBFGS)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(247)
plt.title("RMSprop")
plt.plot(epoch_list,loss_RMSprop)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(248)
plt.title("Rprop")
plt.plot(epoch_list,loss_Rprop)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190671.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面向切面:AOP

面向切面:AOP 大家好,今天本篇博客我们来了解Spring里边的另一个重要部分,叫做AOP,也就是我们说的面向切面编程。 1、场景模拟 首先第一部分,咱们做一个场景模拟。我们先写一个简单的例子,然后通过例子引…

22.能被7整除,并且求和。

#include<stdio.h>int main(){int i ,sum0;printf("1-1000能被7整除的数字有&#xff1a;\n");for(i1;i<1000;i){if(i%70){printf("%d ",i);sumsumi;} }printf("\n");printf("能被7整除的数字的和是&#xff1a;%d ",sum);re…

Django之路由层

文章目录 路由匹配语法路由配置注意事项转换器注册自定义转化器 无名分组和有名分组无名分组有名分组 反向解析简介普通反向解析无名分组、有名分组之反向解析 路由分发简介为什么要用路由分发&#xff1f;路由分发实现 伪静态的概念名称空间虚拟环境什么是虚拟环境&#xff1f…

P5906 【模板】回滚莫队不删除莫队

这一题&#xff0c;虽说在洛谷标的是模板题&#xff0c;但可能没有“历史研究”那一题更加模板。 这一题相对于回滚莫队的模板题&#xff0c;可能在回滚的处理上稍微复杂了一点。对于回滚莫队就不多解释了&#xff0c;可以看一下 回滚莫队模板题 这一篇博客&#xff0c;稍微简单…

DMDEM部署说明-详细步骤-(DM8达梦数据库)

DMDEM部署说明-详细步骤-DM8达梦数据库 环境介绍1 部署DM8 数据库1.1 创建一个数据库作为DEM后台数据库1.2 创建数据库用户 DEM1.3 使用DEM用户导入dem_init.sql 2 配置tomcat2.1 配置/tomcat/conf/server.xml2.2 修改jvm启动参数 3 配置JAVA 1.8及以上版本的运行时环境3.1 配置…

使用Java实现一个简单的贪吃蛇小游戏

一. 准备工作 首先获取贪吃蛇小游戏所需要的头部、身体、食物以及贪吃蛇标题等图片。 然后&#xff0c;创建贪吃蛇游戏的Java项目命名为snake_game&#xff0c;并在这个项目里创建一个文件夹命名为images&#xff0c;将图片素材导入文件夹。 再在src文件下创建两个包&#xff…

【Git】安装和常用命令的使用与讲解及项目搭建和团队开发的出现的问题并且给予解决

目录 Git的简介 介绍 Git的特点及概念 Git与SVN的区别 图解 ​编辑 命令使用 安装 使用前准备 搭建项目环境 ​编辑 团队开发 Git的简介 介绍 Git 是一种分布式版本控制系统&#xff0c;是由 Linux 之父 Linus Torvalds 于2005年创建的。Git 的设计目标是为了更好地管…

链表相关部分OJ题

&#x1f493;作者简介&#x1f44f;&#xff1a;在校大二迷茫大学生 &#x1f496;个人主页&#x1f389;&#xff1a;小李很执着 &#x1f497;系列专栏&#xff1a;Leetcode经典题 每日分享&#xff1a;人总是在离开一个地方后开始原谅它❣️❣️❣️———————————…

Postman汉化教程

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 Postman汉化教程 前言 前言 Postman是一款支持http协议的接口调试与测试工具&#xff0c;其主要特点就是功能强大&#xff0c;使用简单且易用性好 。无论是开发人员进行接口…

JavaScript从入门到精通系列第三十六篇:详解JavaScript中的事件监听和事件响应

文章目录 一&#xff1a;什么叫事件 1&#xff1a;概念 2&#xff1a;处理这个事件 (一)&#xff1a;鼠标单机按钮 (二)&#xff1a;鼠标双机按钮 (三)&#xff1a;鼠标移动 3&#xff1a;写法弊端 4&#xff1a;Dom Event 二&#xff1a;监听事件 1&#xff1a;元素事…

基于php+thinkphp的网上书店购物商城系统

运行环境 开发语言&#xff1a;PHP 数据库:MYSQL数据库 应用服务:apache服务器 使用框架:ThinkPHPvue 开发工具:VScode/Dreamweaver/PhpStorm等均可 项目简介 系统主要分为管理员和用户二部分&#xff0c;管理员主要功能包括&#xff1a;首页、个人中心、用户管理、图书分类…

2023年数维杯国际大学生数学建模挑战赛A题

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2022年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 cs数模团队在数维杯前为大家提供了许多资料的内容呀&#xff0…

云计算、大数据技术的智慧工地,实现对建筑工地实时监测、管理和控制的一种新型建筑管理方式

智慧工地是利用物联网、云计算、大数据等技术&#xff0c;实现对建筑工地实时监测、管理和控制的一种新型建筑管理方式。 智慧工地架构&#xff1a; 1、终端层&#xff1a; 充分利用物联网技术、移动应用、智能硬件设备提高现场管控能力。通过RFID、传感器、摄像头、手机等终…

4.2每日一题(求多元函数在某一点的微分)

1、分别求x和y的偏导&#xff0c;再相加即可 2、因为多元函数的表达式不方便求偏导&#xff0c;所以可以使用先代后求法&#xff1a; &#xff08;1&#xff09;对x偏导&#xff1a;把y0代入&#xff0c;很容易求出对x偏导的结果 &#xff08;2&#xff09;对y偏导&#xff1a…

若依分离版——使用Knife4j 自动生成接口文档

背景&#xff1a; 前后端分离程序&#xff0c;如果需要前端开发人员和后端开发人员配合开发&#xff0c;则需要将接口文档并显性给前端人员 解决办法&#xff1a; 使用knife4j替代若依自带的swagger&#xff0c;因为knife4j是在swagger基础上包装的&#xff0c;Knife4j不仅具…

Vue3 ref函数和reactive函数

一、ref函数 我们在setup函数中导出的属性和方法虽然能够在模板上展示出来&#xff0c;但是并没有给属性添加响应式&#xff0c;因此&#xff0c;我们需要使用ref函数来为我们的数据提供响应式。 &#xff08;一&#xff09;引入ref函数 import { ref } from "vue"…

在vue3中使用Element-plus的图标

首先安装Element-Plus-icon # 选择一个你喜欢的包管理器# NPM $ npm install element-plus/icons-vue # Yarn $ yarn add element-plus/icons-vue # pnpm $ pnpm install element-plus/icons-vue 如何使用 Element-Plus-icon官方文档链接Icon 图标 | Element Plus (element-…

No195.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

Django路由层解析

路由层(urls.py) Django的路由层是用于将URL映射到视图函数的机制。它用于确定请求URL&#xff08;HTTP请求&#xff09;应该被哪个视图函数处理。 Django的路由层包括两个部分&#xff1a; URL模式&#xff1a;匹配请求URL&#xff0c;决定应该使用哪个视图函数来处理请求。UR…

Redhat Linux v8.2 实时内核环境配置及参数调优

BC-Linux V8.2 实时内核环境配置及参数调优 -------物理机 & 虚拟机 一、前言 本文档包含有关Redhat Linux for Real Time的基本安装和调试信息。许多行业和组织需要极高性能的计算&#xff0c;并且可能需要低且可预测的延迟&#xff0c;尤其是在金融和电信行业中。延迟&…