【机器学习基础】机器学习入门(1)

🚀个人主页:为梦而生~ 关注我一起学习吧!
💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~
💡专栏介绍
本专栏的第一篇文章,当然要介绍一下了~来说一下这个专栏的开设动机和主要内容

  • ⭐️作为人工智能专业的学生,我老早之前就想要记录一下人工智能的学习,但是由于太忙一直没时间(现在也很忙),现在正好各种课要结课并且有各种课程设计,借着这次机会开一个专栏,后面可能也没时间了。

  • ⭐️内容安排:这个专栏主要讲解机器学习的理论知识,在实践操作上面尽量也涉及一点,因为没有代码也太空了,大概是根据西瓜书的知识脉络来讲解,大家敬请期待吧!

💡本期内容:大致介绍一下机器学习


文章目录

  • 前言
  • 学习目标
  • 参考书籍
  • Top Conferences
  • Top Journals:
  • 什么是机器学习
  • 机器学习的应用场景
  • 机器学习和深度学习的区别


前言

聊机器学习之前,先来看几张图:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
摘自:中国人工智能发展报告2018

学习目标

  1. Understand fundamental concepts of machine learning. (What)

  2. Know about principles of basic ML methods. (Why)

  3. Hands-on experiences in applying ML methods to real world applications. (How)

参考书籍

  1. “机器学习” by 周志华
  2. “The Elements of Statistical Learning” by Trevor Hastie
  3. “Machine Learning” by Tom Mitchell
  4. “统计学习方法”, 李航

Top Conferences

  1. International Conference on Machine Learning (ICML)
  2. Meeting of the Association for Computational Linguistics (ACL)
  3. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  4. American Conference on Artificial Intelligence (AAAI)
  5. Conference and Workshop on Neural Information Processing Systems (NeurIPS)
  6. World Wide Web (WWW)
  7. SIGIR
  8. SIGKDD

Top Journals:

  1. Artificial Intelligence
  2. IEEE Transactions on Pattern Analysis and Machine Intelligence
  3. IEEE-Transactions on Knowledge and Data Engineering
  4. International Journal of Computer Vision
  5. IEEE Transactions on Affective Computing
  6. ACM International Conference on Multimedia

什么是机器学习

在这里插入图片描述

机器学习有几个主要类型:

  1. 监督学习(Supervised Learning):在这种学习方法中,算法从带有标签的训练数据中学习。标签是指我们已知的“答案”。例如,如果我们要预测房价,我们可能会用—套房屋特征(如面积、卧室数量等)和相应的价格(标签)来训练模型。—旦模型被训练好,我们可以用它来预测新房屋的价格。
  2. 无监督学习(Unsupervised Learning):在这种方法中,算法只有输入数据,没有任何标签。其目标通常是找到数据中的结构或模式。常见的无监督学习方法有聚类(Clustering)和降维(Dimensionality Reduction)。
  3. 强化学习(Reinforcement Learning):这是一个关于决策过程的学习方法。在强化学习中,智能体(agent)在环境中执行操作,以此来获得奖励或惩罚。其目标是学习—种策略,使得它能够最大化获得的奖励。

机器学习有广泛的应用,包括语音识别、图像识别、推荐系统、自然语言处理等。随着技术的进步,机器学习已经成为当今技术界的核心组成部分,并在各种行业和领域中都发挥着重要作用。
在这里插入图片描述

“A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.” --Tom Mitchell (1998)


机器学习的应用场景

在这里插入图片描述

机器学习在各个领域都有广泛的应用,以下是一些主要领域的应用和发展前景:

  1. 医疗领域:机器学习可以帮助医疗机构快速诊断疾病、提高医疗服务质量。例如,通过分析患者的基因组数据,可以预测患者对特定药物的反应,从而提高治疗效果。此外,机器学习还可以帮助医生分析大量的医疗图像数据,以便更准确地诊断疾病和制定治疗方案。在未来的发展中,随着大数据和深度学习技术的进步,机器学习可能会在个性化医疗、药物研发等领域发挥更大的作用。
  2. 交通领域:机器学习可以帮助交通管理部门预测交通拥堵情况、优化道路布局。通过分析历史交通数据,可以预测未来的交通流量和拥堵情况,从而优化交通规划和管理。此外,机器学习还可以应用于自动驾驶技术,通过学习大量的驾驶数据,使自动驾驶车辆能够更好地适应复杂的交通环境。
  3. 教育领域:机器学习可以帮助教育机构提高教学质量和个性化学习体验。通过分析学生的学习行为和成绩等数据,可以了解学生的学习特点和需求,从而提供个性化的学习建议和资源。此外,机器学习还可以帮助教师更好地评估学生的学习效果和表现,以便更好地指导学生学习。
  4. 制造领域:机器学习可以帮助企业实现自动化生产、提高生产效率。通过分析生产数据,可以预测设备的故障和维护需求,从而提前进行维修和更换部件,避免生产中断。此外,机器学习还可以应用于质量控制领域,通过分析生产过程中的数据,检测和识别潜在的质量问题,从而提高产品质量和生产效率。

总之,机器学习在各个领域都有广泛的应用前景,未来随着技术的进步和发展,将会在更多的领域得到应用和发展。同时,也需要关注机器学习应用中可能出现的问题和挑战,如数据隐私、算法透明性等问题,以确保其可持续发展。


机器学习和深度学习的区别

在这里插入图片描述

  1. 模型复杂度:机器学习通常使用传统的线性模型或非线性模型,如决策树、支持向量机等,而深度学习构建了多层神经网络,网络中的神经元之间存在大量的连接和权重,模型的复杂度更高。
  2. 数据量:机器学习通常需要大量的数据进行训练,而深度学习则更加注重数据的质量和多样性,通常需要更大的数据集才能获得更好的效果。
  3. 特征提取:机器学习通常需要人工提取数据中的特征,而深度学习则可以自动学习特征,减少了人工参与的过程。
  4. 训练速度和计算资源:由于深度学习模型的复杂度更高,所以训练速度更慢,需要更多的计算资源,例如GPU等。
  5. 应用场景:机器学习可应用于各个领域中,包括语音识别、图像标注、生物信息学等,而深度学习在计算机视觉、自然语言处理、语音识别等领域中表现出更好的效果。

总结来说,机器学习和深度学习都是人工智能领域的分支,深度学习是机器学习的一种方法,二者相互关联但又不完全相同。在具体应用中,需要根据具体的问题和数据特点进行判断和选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/191163.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【已解决】vscode 配置C51和MDK环境配置

使用命令 gcc -v -E -x c - 看自己gcc 有没有安装好 也可以在自己的vscode中新建一个终端 gcc -v g -v 首先把自己的C51 和MDK 路径 设置好 vscode 中设置 C51 和 MDK 的路径 这是你keil 中写 51单片机和 STM32 的 如果你出现什么include 的什么波浪线,那估计…

记录pytorch实现自定义算子并转onnx文件输出

概览:记录了如何自定义一个算子,实现pytorch注册,通过C编译为库文件供python端调用,并转为onnx文件输出 整体大概流程: 定义算子实现为torch的C版本文件注册算子编译算子生成库文件调用自定义算子 一、编译环境准备…

dameng数据库数据id decimal类型,精度丢失

问题处理 这一次也是精度丢失,但是问题呢还是不一样,这一次所有的id都被加一了,只有id字段被加一,还有的查询查出来封装成对象之后对象的id字段被减一了,数据库id字段使用的decimal(20,6)&…

sass 封装媒体查询工具

背景 以往写媒体查询可能是这样的&#xff1a; .header {display: flex;width: 100%; }media (width > 320px) and (width < 480px) {.header {height: 50px;} }media (width > 480px) and (width < 768px) {.header {height: 60px;} }media (width > 768px) …

Linux下MSSQL (SQL Server)数据库无法启动故障处理

有同事反馈一套CentOS7下的mssql server2017无法启动需要我帮忙看看&#xff0c;启动报错情况如下 检查日志并没有更新日志信息 乍一看mssql-server服务有问题&#xff0c;检查mssql也确实没有进程 既然服务有问题&#xff0c;那么我们用一种方式直接手工后台启动mssql引擎来…

集成Line、Facebook、Twitter、Google、微信、QQ、微博、支付宝的三方登录sdk

下载地址&#xff1a; https://githubfast.com/anerg2046/sns_auth 安装方式建议使用composer进行安装 如果linux执行composer不方便的话&#xff0c;可以在本地新建个文件夹&#xff0c;然后执行上面的composer命令&#xff0c;把代码sdk和composer文件一起上传到项目适当位…

使用validator实现枚举类型校验

使用validator实现枚举类型校验 前言&#xff1a; 在前端调用后端接口传递参数的过程中&#xff0c;我们往往需要对前端传递过来的参数进行校验&#xff0c;比如说我们此时需要对用户的状态进行更新&#xff0c;而用户的状态只有正常和已删除&#xff0c;并且是在代码中通过枚…

点大商城V2版 2.5.3全插件开源独立版 百度+支付宝+QQ+头条+小程序端+unipp开源端安装测试教程

点大商城V2是一款采用全新界面设计支持多端覆盖的小程序应用&#xff0c;支持H5、微信公众号、微信小程序、头条小程序、支付宝小程序、百度小程序&#xff0c;本程序是点大商城V2独立版&#xff0c;包含全部插件&#xff0c;代码全开源&#xff0c;并且有VUE全端代码。 适用范…

使用Python和requests库的简单爬虫程序

这是一个使用Python和requests库的简单爬虫程序。我们将使用代理来爬取网页内容。以下是代码和解释&#xff1a; import requests from fake_useragent import UserAgent # 每行代理信息 proxy_host "jshk.com.cn" # 创建一个代理器 proxy {http: http:// proxy_…

Clickhouse学习笔记(10)—— 查询优化

单表查询 Prewhere 替代 where prewhere与where相比&#xff0c;在过滤数据的时候会首先读取指定的列数据&#xff0c;来判断数据过滤&#xff0c;等待数据过滤之后再读取 select 声明的列字段来补全其余属性 简单来说就是先过滤再查询&#xff0c;而where过滤是先查询出对应…

Android Studio真机运行时提示“安装失败”

用中兴手机真机运行没问题&#xff0c;用Vivo运行就提示安装失败。前提&#xff0c;手机已经打开了调试模式。 报错 Android Studio报错提示&#xff1a; Error running app The application could not be installed: INSTALL_FAILED_TEST_ONLY 手机报错提示&#xff1a; 修…

专访|OpenTiny 社区 Mr 栋:结合兴趣,明确定位,在开源中给自己一些技术性挑战

前言 OpenTiny 开源之夏项目终于迎来了圆满的结局。借此机会&#xff0c;我们采访了 TinyReact 的共建者 Mr 栋同学。 Mr 栋同学是一位热衷于前端技术的开发者&#xff0c;对前端开发充满了激情和热爱。同时他也是一位即将毕业的大四在校生。在 OpenTiny 开源项目中&#xff0…

Window安装MongoDB

三种NOSQL的一种,Redis MongoDB ES 应用场景: 1.社交场景:使用Mongodb存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人,地点等功能 2.游戏场景:使用Mongodb存储游戏用户信息,用户的装备,积分等直接以内嵌文档的形式存储,方便查询,高效率存储和访问…

软路由R4S+iStoreOS实现公网远程桌面局域网内电脑

软路由R4SiStoreOS实现公网远程桌面局域网内电脑 文章目录 软路由R4SiStoreOS实现公网远程桌面局域网内电脑简介 一、配置远程桌面公网地址配置隧道 二、家中使用永久固定地址 访问公司电脑具体操作方法是&#xff1a;2.1 登录页面2.2 再次配置隧道2.3 查看访问效果 简介 上篇…

EDA实验-----3-8译码器设计(QuartusII)

目录 一. 实验目的 二. 实验仪器 三. 实验原理及内容 1.实验原理 2.实验内容 四&#xff0e;实验步骤 五. 实验报告 六. 注意事项 七. 实验过程 1.创建Verilog文件&#xff0c;写代码 ​编辑 2.波形仿真 3.连接电路图 4.烧录操作 一. 实验目的 学会Verilog HDL的…

JVM如何运行,揭秘Java虚拟机运行时数据区

目录 一、概述 二、程序计数器 三、虚拟机栈 四、本地方法栈 五、本地方法接口 六、堆 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;堆空间细分 七、方法区 一、概述 不同的JVM对于内存的划分方式和管理机制存在部分差异&#xff0c;后续针对HotSpot虚…

前端案例-css实现ul中对li进行换行

场景描述&#xff1a; 我想要实现&#xff0c;在展示的item个数少于4个的时候&#xff0c;则排成一行&#xff0c;并且均分&#xff08;比如说有3个&#xff0c;则每个的宽度为33.3%&#xff09;&#xff0c;如果item 个数大于4&#xff0c;则进行换行。 效果如下&#xff1a…

网络运维Day14

监控概述 监控的目的 报告系统运行状况每一部分必须同时监控内容包括吞吐量、反应时间、使用率等提前发现问题进行服务器性能调整前&#xff0c;知道调整什么找出系统的瓶颈在什么地方 监控的资源类别 公开数据 Web、FTP、SSH、数据库等应用服务TCP或UDP端口 私有数据 CPU、内…

【Java 进阶篇】JQuery DOM操作:舞动网页的属性魔法

在前端的舞台上&#xff0c;属性操作是我们与HTML元素进行互动的关键步骤之一。而JQuery&#xff0c;这位前端开发的巫师&#xff0c;通过简洁而强大的语法&#xff0c;为我们提供了便捷的属性操作工具。在这篇博客中&#xff0c;我们将深入研究JQuery DOM操作中的属性操作&…

Android Rxjava架构原理与使用的详解解答

简单介绍 Rxjava这个名字&#xff0c;其中java代表java语言&#xff0c;而Rx是什么意思呢&#xff1f;Rx是Reactive Extensions的简写&#xff0c;翻译过来就是&#xff0c;响应式拓展。所以Rxjava的名字的含义就是&#xff0c;对java语言的拓展&#xff0c;让其可以实现对数据…