(五)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划MATLAB

一、七种算法(DBO、LO、SWO、COA、LSO、KOA、GRO)简介

1、蜣螂优化算法DBO

蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁殖行为的启发所得。【精选】单目标优化:蜣螂优化算法(Dung beetle optimizer,DBO)_蜣螂算法_IT猿手的博客-CSDN博客

参考文献:Xue, J., Shen, B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput (2022). Dung beetle optimizer: a new meta-heuristic algorithm for global optimization | SpringerLink

2、狐猴优化算法LO

狐猴优化算法(Lemurs Optimizer,LO)由Ammar Kamal Abasi等人于2022年提出,该算法模拟狐猴的跳跃和跳舞行为,具有结构简单,思路新颖,搜索速度快等优势。单目标应用:基于狐猴优化算法(Lemurs Optimizer,LO)的微电网优化调度MATLAB_IT猿手的博客-CSDN博客

参考文献:

[1]Abasi AK, Makhadmeh SN, Al-Betar MA, Alomari OA, Awadallah MA, Alyasseri ZAA, Doush IA, Elnagar A, Alkhammash EH, Hadjouni M. Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization. Applied Sciences. 2022; 12(19):10057. Applied Sciences | Free Full-Text | Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

3、蜘蛛蜂优化算法SWO

蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为,具有搜索速度快,求解精度高的优势。VRPTW(MATLAB):蜘蛛蜂优化算法SWO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

[1]Abdel-Basset, M., Mohamed, R., Jameel, M. et al. Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm | SpringerLink

4、小龙虾优化算法COA

小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡全局搜索和局部搜索的能力。多目标优化算法:基于非支配排序的小龙虾优化算法(NSCOA)MATLAB_IT猿手的博客-CSDN博客

参考文献:

[1] Jia, H., Rao, H., Wen, C. et al. Crayfish optimization algorithm. Artif Intell Rev (2023). Crayfish optimization algorithm | SpringerLink

5、光谱优化算法LSO

光谱优化算法(Light Spectrum Optimizer,LSO)由Mohamed Abdel-Basset等人于2022年提出。MD-MTSP:光谱优化算法LSO求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)_IT猿手的博客-CSDN博客

参考文献:

[1]Abdel-Basset M, Mohamed R, Sallam KM, Chakrabortty RK. Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm. Mathematics. 2022; 10(19):3466. Mathematics | Free Full-Text | Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm

6、开普勒优化算法KOA

开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。五种最新优化算法(SWO、ZOA、EVO、KOA、GRO)求解23个基准测试函数(含参考文献及MATLAB代码)_swo算法_IT猿手的博客-CSDN博客

参考文献:

Mohamed Abdel-Basset, Reda Mohamed, Shaimaa A. Abdel Azeem, Mohammed Jameel, Mohamed Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion, Knowledge-Based Systems, 2023. DOI: Redirecting

7、淘金优化算法GRO

淘金优化算法(Gold rush optimizer,GRO)由Kamran Zolf于2023年提出,其灵感来自淘金热,模拟淘金者进行黄金勘探行为。VRPTW(MATLAB):淘金优化算法GRO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

K. Zolfi. Gold rush optimizer: A new population-based metaheuristic algorithm. Operations Research and Decisions 2023: 33(1), 113-150. DOI 10.37190/ord230108

二、模型简介

单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客

参考文献:

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

三、DBO、LO、SWO、COA、LSO、KOA、GRO求解无人机路径规划

(1)部分代码

close all
clear  
clc
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F1'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=100; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
AlgorithmName={'DBO','LO','SWO','COA','LSO','KOA','GRO'};%算法名称
addpath('./AlgorithmCode/')%添加算法路径
bestFit=[];%保存各算法的最优适应度值
for i=1:size(AlgorithmName,2)%遍历每个算法,依次求解当前问题
Algorithm=str2func(AlgorithmName{i});%获取当前算法名称,并将字符转换为函数
[Best_score,Best_pos,Convergence_curve]=Algorithm(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%当前算法求解
%将当前算法求解结果放入data中
data(i).Best_score=Best_score;%保存该算法的Best_score到data
data(i).Best_pos=Best_pos;%保存该算法的Best_pos到data
data(i).Convergence_curve=Convergence_curve;%保存该算法的Convergence_curve到data
bestFit=[bestFit data(i).Best_score];
end%%  画各算法的直方图
figure 
bar(bestFit)
ylabel('无人机飞行路径长度');
set(gca,'xtick',1:1:size(AlgorithmName,2));
set(gca,'XTickLabel',AlgorithmName)
saveas(gcf,'./Picture/直方图.jpg') %将图片保存到Picture文件夹下面%%  画收敛曲线
strColor={'r-','g-','b-','k-','m-','c-','y-'};
figure
for i=1:size(data,2)
plot(data(i).Convergence_curve,strColor{i},'linewidth',1.5)%semilogy
hold on
end
xlabel('迭代次数');
ylabel('无人机飞行路径长度');
legend(AlgorithmName,'Location','Best')
saveas(gcf,'./Picture/收敛曲线.jpg') %将图片保存到Picture文件夹下面%% 显示三维图并保存
path=plotFigure(data,AlgorithmName,strColor);%path是各算法求解的无人机路径
saveas(gcf,'./Picture/路径曲线(三维).jpg') %将图片保存到Picture文件夹下面%% 显示二维图并保存
view(2)
saveas(gcf,'./Picture/路径曲线(二维).jpg') %将图片保存到Picture文件夹下面

(2)部分结果

四、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/193121.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于乌鸦优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…

【Python】jupyter notebook(学习笔记)

Jupyter Notebook初见 1、Jupyter Notebook介绍 web版的ipython 编程、写文档、记笔记、展示 格式.ipynb 2、为什么使用Jupyter Notebook? 画图方面的优势:图像的生成不会堵塞后面代码的执行数据展示方面的优势:生成的数据可以保存在文件中 3、J…

《QT从基础到进阶·二十一》QGraphicsView、QGraphicsScene和QGraphicsItem坐标关系和应用

前言: 我们需要先由一个 QGraphicsView,这个是UI显示的地方,也就是装满可见原色的Scene,然后需要一个QGraphicsScene 用来管理所有可见的界面元素,要实现UI功能,我们需要用各种从QGraphicsItem拼装成UI控件…

MySQL MVCC机制详解

MySQL MVCC机制详解 MVCC, 是Multi Version Concurrency Control的缩写,其含义是多版本并发控制。这一概念的提出是为了使得MySQL可以实现RC隔离级别和RR隔离级别。 这里回顾一下MySQL的事务, MySQL的隔离级别和各种隔离级别所存在的问题。 事务是由 …

redis基线检查

1、禁止使用 root 用户启动 | 访问控制 描述: 使用root权限来运行网络服务存在较大的风险。Nginx和Apache都有独立的work用户,而Redis没有。例如,Redis的Crackit漏洞就是利用root用户权限替换或增加authorize_keys,从而获取root登录权限。 加固建议: 使用root切换到re…

新版软考高项试题分析精选(二)

请点击↑关注、收藏,本博客免费为你获取精彩知识分享!有惊喜哟!! 1、除了测试程序之外,黑盒测试还适用于测试( )阶段的软件文档。 A.编码 B.总体设计 D.数据库设计 C.软件需求分析 答案&a…

NSSCTF第12页(2)

[CSAWQual 2019]Unagi 是xxe注入,等找时间会专门去学一下 XML外部实体(XXE)注入 - 知乎 【精选】XML注入学习-CSDN博客 【精选】XML注入_xml注入例子-CSDN博客 题目描述说flag在/flag下 发现有上传点,上传一句话木马试试 文件…

一文搞懂CAN总线协议

1.基础概念 CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 ISO 国际标准化的串行通信协议。在北美和西欧,CAN 总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以 CAN 为底层…

指针传2

几天没有写博客了,怎么说呢?这让我总感觉缺点什么,心里空落落的,你懂吧! 好了,接下来开始我们今天的正题! 1. ⼆级指针 我们先来看看代码: 首先创建了一个整型变量a,将…

在 HarmonyOS 上实现 ArkTS 与 H5 的交互

介绍 本篇 Codelab 主要介绍 H5 如何调用原生侧相关功能,并在回调中获取执行结果。以“获取通讯录”为示例分步讲解 JSBridge 桥接的实现。 相关概念 Web组件:提供具有网页显示能力的 Web 组件。 ohos.web.webview:提供 web 控制能力。 …

<C++> 优先级队列

目录 前言 一、priority_queue的使用 1. 成员函数 2. 例题 二、仿函数 三、模拟实现 1. 迭代器区间构造函数 && AdjustDown 2. pop 3. push && AdjustUp 4. top 5. size 6. empty 四、完整实现 总结 前言 优先级队列以及前面的双端队列基本上已经脱离了队列定…

Ansible 企业实战详解

一、ansible简介1. ansible是什么2.ansible的特点ansible的架构图 二、ansible 任务执行1、ansible 任务执行模式2、ansible 执行流程3、ansible 命令执行过程 二 .Ansible安装部署1.yum安装2.ansible 程序结构3、ansible配置文件查找顺序4、ansible配置文件5.ansible自动化配置…

electronjs入门-编辑器应用程序

我们将在Electron中创建一个新项目,如我们在第1章中所示,名为“编辑器”,我们将在下一章中使用它来创建编辑器;在index.js中,这是我们的主要过程;请记住为Electron软件包放置必要的依赖项: npm…

uniapp基础学习笔记01

文章目录 本博客根据黑马教程学习uniapp一、技术架构二、创建项目2.1 Hbuilder创建2.2 插件安装2.3 微信开发者工具配置与运行2.3.1 简单修改基础页面 2.4 pages.json和tabBar2.4.1 pages.json与tabBar配置2.4.2 案例 三、uniapp与原生开发的区别 本博客根据黑马教程学习uniapp…

安装node.js指定任意版本详解

Node.js是一种基于Chrome V8引擎的JavaScript运行时环境。它允许开发人员使用JavaScript编写服务器端和网络应用程序。与传统的JavaScript在浏览器中执行不同,Node.js使得JavaScript可以在服务器端运行。 Node.js具有以下特点: 1. 非阻塞式I/O&#xf…

Java设计模式-结构型模式-适配器模式

适配器模式 适配器模式应用场景案例类适配器模式对象适配器模式接口适配器模式适配器模式在源码中的使用 适配器模式 如图:国外插座标准和国内不同,要使用国内的充电器,就需要转接插头,转接插头就是起到适配器的作用 适配器模式&…

springboot国际化

1.环境配置 这里插入图片描述](https://img-blog.csdnimg.cn/024d6bc95623485eb6da4d998a892458.png) 2.文件配置 第一个默认环境 第二个英文环境 第三个中文环境 3.变量配置 调整语言 原理: 找到MessageSourceAutoConfiguration 中的 利用代碼的方式獲取国…

图论11-欧拉回路与欧拉路径+Hierholzer算法实现

文章目录 1 欧拉回路的概念2 欧拉回路的算法实现3 Hierholzer算法详解4 Hierholzer算法实现4.1 修改Graph,增加API4.2 Graph.java4.3 联通分量类4.4 欧拉回路类 1 欧拉回路的概念 2 欧拉回路的算法实现 private boolean hasEulerLoop(){CC cc new CC(G);if(cc.cou…

数字化转型时代,商业智能BI到底是什么?

据国际数据公司(IDC)预测,2025年时中国产生的数据量预计将达48.6ZB,在全球中的比例为27.8%。商业智能BI这一专为企业提供服务的数据类解决方案,仅2021年上半年在中国商业智能BI市场规模就达到了3.2亿美元,商…

java入门,从CK导一部分数据到mysql

一、需求 需要从生产环境ck数据库导数据到mysql,数据量大约100w条记录。 二、处理步骤 1、这里的关键词是生产库,第二就是100w条记录。所以处理数据的时候就要遵守一定的规范。首先将原数据库表进行备份,或者将需要导出的数据建一张新的表了…