《视觉SLAM十四讲》-- 后端 2

文章目录

    • 09 后端 2
      • 9.1 滑动窗口滤波和优化
        • 9.1.1 实际环境下的 BA 结构
        • 9.1.2 滑动窗口法
      • 9.2 位姿图
        • 9.2.1 位姿图的意义
        • 9.2.2 位姿图优化

09 后端 2

9.1 滑动窗口滤波和优化

9.1.1 实际环境下的 BA 结构

由于计算机算力的限制,我们必须控制 BA 的规模,一种简单的思路是仅保留离当前时刻最近的 N N N 个关键帧,去掉时间上更早的关键帧。于是,BA 被固定在一个时间窗口内,离开这个窗口的即被抛弃,称为 滑动窗口法

或者像 ORB-SLAM 2 那样,定义一种称为 共视图 的结构,即与当前相机存在共同观测的关键帧构成的图。在 BA 优化时,按照某些原则在共视图内取一些关键帧和路标进行优化。

在这里插入图片描述

9.1.2 滑动窗口法

(1)现在考虑一个滑动窗口,假设窗口内有 N N N 个关键帧,他们的位姿表达为(李代数形式):

x 1 , x 2 , . . . , x N \boldsymbol{x}_1, \boldsymbol{x}_2,...,\boldsymbol{x}_N x1,x2,...,xN

假设这个滑动窗口中还有 M M M 个路标点 y 1 , y 2 , . . . , y M \boldsymbol{y}_1, \boldsymbol{y}_2,...,\boldsymbol{y}_M y1,y2,...,yM,用上一讲中的 BA 方法来处理这个滑动窗口,包括建立图优化模型,构建海森矩阵,在边缘化所有路标点来加速求解。边缘化时,考虑关键帧的位姿:

[ x 1 , … , x N ] T ∼ N ( [ μ 1 , … , μ N ] T , Σ ) (9-1) \left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right]^{\mathrm{T}} \sim N\left(\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{N}\right]^{\mathrm{T}}, \boldsymbol{\Sigma}\right) \tag{9-1} [x1,,xN]TN([μ1,,μN]T,Σ)(9-1)

其中 μ k \boldsymbol{\mu}_k μk 为第 k k k 个关键帧的位姿均值, Σ \boldsymbol{\Sigma} Σ 为所有关键帧的协方差矩阵。显然,均值部分就是 BA 迭代之后的结果, Σ \boldsymbol{\Sigma} Σ 是对整个 BA 的 H \boldsymbol{H} H 矩阵进行边缘化之后的结果。

(2)当窗口结构改变时:

① 先在窗口中新增一个关键帧,以及观测到的路标点;

② 把窗口中一个旧的关键帧删除,可能会删除他观测到的路标点。

  • 新增一个关键帧和路标点

将新的关键帧 x N + 1 \boldsymbol{x}_{N+1} xN+1 按照正常的 BA 流程处理即可。

  • 删除一个旧的关键帧

删除旧的关键帧时,就比较麻烦。比如删除 x 1 \boldsymbol{x}_1 x1 ,但 x 1 \boldsymbol{x}_1 x1 并不是孤立的,它会和其它帧观测到同样的路标,将 x 1 \boldsymbol{x}_1 x1 边缘化后将导致整个问题不再稀疏(破坏了路标部分的对角块结构)。

在这里插入图片描述

(3)滑动窗口法适合 VO 系统,而不适合大规模建图的系统。

9.2 位姿图

9.2.1 位姿图的意义

(1)随着时间的流逝,机器人的运动轨迹会越来越长,地图规模也会越来越大,BA 的计算效率就会下降。同时我们发现,经过若干次迭代后,收敛的特征点位置变化很小,发散的外点则已被剔除,因此在后续优化中没有必要再将收敛点考虑进来,而是只把他们当做位姿估计的约束。

(2)放开思路,我们完全可以构建一个只有轨迹的图优化,而位姿节点的边,可以由两个关键帧之间通过特征匹配之后得到的运动估计来给定初始值。一旦初始估计完成,就不再优化那些路标点的位置,而只关心相机位姿之间的联系。这样的方式,省去了大量特征点优化的计算,只保留了关键帧的轨迹,构建了所谓的 位姿图

在这里插入图片描述

通过舍弃对路标点的优化,提高计算效率。

9.2.2 位姿图优化

位姿图中的节点表示相机位姿,用 T 1 , T 2 , . . . , T n , \boldsymbol{T}_1,\boldsymbol{T}_2,...,\boldsymbol{T}_n, T1,T2,...,Tn, 表示,边则是两个位姿节点之间相对运动的估计,这个估计可以通过特征点法或直接法得到。假设我们估计了 T i \boldsymbol{T}_i Ti T j \boldsymbol{T}_j Tj 之间的相对运动 T i j \boldsymbol{T}_{ij} Tij,则有

T i T i j = T j \boldsymbol{T}_i \boldsymbol{T}_{ij}=\boldsymbol{T}_j TiTij=Tj

也即

T i j = T i − 1 T j (9-2) \boldsymbol{T}_{ij}=\boldsymbol{T}_i^{-1}\boldsymbol{T}_j \tag{9-2} Tij=Ti1Tj(9-2)

写成李代数形式

ξ i j = ξ i − 1 ∘ ξ j = ln ⁡ ( T i − 1 T j ) ∨ (9-3) \boldsymbol{\xi}_{i j}=\boldsymbol{\xi}_{i}^{-1} \circ \boldsymbol{\xi}_{j}=\ln \left(\boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j}\right)^{\vee} \tag{9-3} ξij=ξi1ξj=ln(Ti1Tj)(9-3)

将式(9-2)中的 Δ T i j \Delta \boldsymbol{T}_{ij} ΔTij 移至方程右侧,则

T i j − 1 T i − 1 T j = I (9-4) \boldsymbol{T}_{ij}^{-1}\boldsymbol{T}_i^{-1}\boldsymbol{T}_j=\boldsymbol{I} \tag{9-4} Tij1Ti1Tj=I(9-4)

但实际上,并不可能完全相等。定义

e i j = ln ⁡ ( T i j − 1 T i − 1 T j ) ∨ (9-5) \boldsymbol{e}_{ij}=\ln( \boldsymbol{T}_{ij}^{-1}\boldsymbol{T}_i^{-1}\boldsymbol{T}_j)^{\vee} \tag{9-5} eij=ln(Tij1Ti1Tj)(9-5)

我们需要优化的是 T i \boldsymbol{T}_i Ti T j \boldsymbol{T}_j Tj,也即 ξ i \boldsymbol{\xi}_i ξi ξ j \boldsymbol{\xi}_j ξj,因此需要求这两个变量关于 e i j \boldsymbol{e}_{ij} eij 的导数。分别左乘一个左扰动: δ ξ i \boldsymbol{\delta \xi}_i δξi δ ξ j \boldsymbol{\delta \xi}_j δξj

e ^ i j = ln ⁡ ( T i j − 1 T i − 1 exp ⁡ ( ( − δ ξ i ) ∧ exp ⁡ ( ( δ ξ j ) ∧ T j ) ∨ (9-6) \boldsymbol{\hat{e}}_{ij}=\ln( \boldsymbol{T}_{ij}^{-1}\boldsymbol{T}_i^{-1} \exp((-\boldsymbol{\delta \xi}_i)^{\wedge}\exp((\boldsymbol{\delta \xi}_j)^{\wedge} \boldsymbol{T}_j)^{\vee} \tag{9-6} e^ij=ln(Tij1Ti1exp((δξi)exp((δξj)Tj)(9-6)

根据伴随矩阵的性质:

exp ⁡ ( ( Ad ⁡ ( T ) ξ ) ∧ ) = T exp ⁡ ( ξ ∧ ) T − 1 (9-7) \exp \left((\operatorname{Ad}(\boldsymbol{T}) \boldsymbol{\xi})^{\wedge}\right)=\boldsymbol{T} \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{T}^{-1} \tag{9-7} exp((Ad(T)ξ))=Texp(ξ)T1(9-7)

稍作改变(把 Ad ⁡ ( T ) \operatorname{Ad}(\boldsymbol{T}) Ad(T) 移到右侧,$ \boldsymbol{T}^{-1}$ 移到左侧)

exp ⁡ ( ξ ∧ ) T = T exp ⁡ ( ( Ad ⁡ ( T − 1 ) ξ ) ∧ ) (9-9) \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{T}=\boldsymbol{T} \exp \left(\left(\operatorname{Ad}\left(\boldsymbol{T}^{-1}\right) \boldsymbol{\xi}\right)^{\wedge}\right) \tag{9-9} exp(ξ)T=Texp((Ad(T1)ξ))(9-9)

那么,式(9-6)可写为(从右往左化简)

e ^ i j = ln ⁡ ( T i j − 1 T i − 1 exp ⁡ ( ( − δ ξ i ) ∧ ) exp ⁡ ( δ ξ j ∧ ) T j ‾ ) ∨ = ln ⁡ ( T i j − 1 T i − 1 exp ⁡ ( ( − δ ξ i ) ∧ ) T j ‾ exp ⁡ ( ( Ad ⁡ ( T j − 1 ) δ ξ j ) ∧ ) ) ∨ = ln ⁡ ( T i j − 1 T i − 1 T j exp ⁡ ( ( − Ad ⁡ ( T j − 1 ) δ ξ i ) ∧ ) exp ⁡ ( ( Ad ⁡ ( T j − 1 ) δ ξ j ) ∧ ) ) ∨ ≈ ln ⁡ ( T i j − 1 T i − 1 T j [ I − ( Ad ⁡ ( T j − 1 ) δ ξ i ) ∧ + ( Ad ⁡ ( T j − 1 ) δ ξ j ) ∧ ] ) ∨ ≈ e i j + ∂ e i j ∂ δ ξ i δ ξ i + ∂ e i j ∂ δ ξ j δ ξ j (9-10) \begin{aligned} \hat{\boldsymbol{e}}_{i j} &=\ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \exp \left(\left(-\boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}\right) \underline{\exp \left(\delta \boldsymbol{\xi}_{j}^{\wedge}\right) \boldsymbol{T}_{j}}\right)^{\vee} \\ &=\ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \underline{\exp \left(\left(-\boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}\right) \boldsymbol{T}_{j}} \exp \left(\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{j}\right)^{\wedge}\right)\right)^{\vee} \\ &=\ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j} \exp \left(\left(-\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}\right) \exp \left(\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{j}\right)^{\wedge}\right)\right)^{\vee} \\ & \approx \ln \left(\boldsymbol{T}_{i j}^{-1} \boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j}\left[\boldsymbol{I}-\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{i}\right)^{\wedge}+\left(\operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \boldsymbol{\delta} \boldsymbol{\xi}_{j}\right)^{\wedge}\right]\right)^{\vee} \\ & \approx \boldsymbol{e}_{i j}+\frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{i}} \boldsymbol{\delta} \boldsymbol{\xi}_{i}+\frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{j}} \boldsymbol{\delta} \boldsymbol{\xi}_{j} \end{aligned} \tag{9-10} e^ij=ln(Tij1Ti1exp((δξi))exp(δξj)Tj)=ln(Tij1Ti1exp((δξi))Tjexp((Ad(Tj1)δξj)))=ln(Tij1Ti1Tjexp((Ad(Tj1)δξi))exp((Ad(Tj1)δξj)))ln(Tij1Ti1Tj[I(Ad(Tj1)δξi)+(Ad(Tj1)δξj)])eij+δξieijδξi+δξjeijδξj(9-10)

其中,第四步将两个指数一阶泰勒展开,相乘后舍去二次项;第四步到第五步则使用了 BCH 近似。

按照李代数上的求导法则,我们得到了误差关于两个位姿的雅克比矩阵,即

∂ e i j ∂ δ ξ i = − J r − 1 ( e i j ) Ad ⁡ ( T j − 1 ) \frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{i}}=-\mathcal{J}_{r}^{-1}\left(\boldsymbol{e}_{i j}\right) \operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) δξieij=Jr1(eij)Ad(Tj1)
∂ e i j ∂ δ ξ j = J r − 1 ( e i j ) Ad ⁡ ( T j − 1 ) (9-11) \frac{\partial \boldsymbol{e}_{i j}}{\partial \boldsymbol{\delta} \boldsymbol{\xi}_{j}}=\mathcal{J}_{r}^{-1}\left(\boldsymbol{e}_{i j}\right) \operatorname{Ad}\left(\boldsymbol{T}_{j}^{-1}\right) \tag{9-11} δξjeij=Jr1(eij)Ad(Tj1)(9-11)

J r \mathcal{J}_{r} Jr 的形式比较复杂,通常取它的近似,

J r − 1 ( e i j ) ≈ I + 1 2 [ ϕ e ∧ ρ e ∧ 0 ϕ e ∧ ] (9-12) \mathcal{J}_{r}^{-1}\left(e_{i j}\right) \approx \boldsymbol{I}+\frac{1}{2}\left[\begin{array}{cc} \phi_{e}^{\wedge} & \rho_{e}^{\wedge} \\ 0 & \phi_{e}^{\wedge} \end{array}\right] \tag{9-12} Jr1(eij)I+21[ϕe0ρeϕe](9-12)

了解雅克比求导后,剩下的部分就是普通的图优化。 记所有的边(也就是位姿)为 E \mathcal{E} E,则总体目标函数为

min ⁡ 1 2 ∑ i , j ∈ E e i j T Σ i j − 1 e i j (9-13) \min \frac{1}{2} \sum_{i, j \in \mathcal{E}} \boldsymbol{e}_{i j}^{\mathrm{T}} \boldsymbol{\Sigma}_{i j}^{-1} \boldsymbol{e}_{i j} \tag{9-13} min21i,jEeijTΣij1eij(9-13)

然后再用高斯牛顿法或 L-M 法优化求解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/194793.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Perl的LWP::UserAgent库爬虫程序怎么写

Perl的LWP::UserAgent库是一个用于发送HTTP请求的Perl模块。它可以用于编写Web爬虫、测试Web应用程序、自动化Web操作等。以下是一个简单的使用LWP::UserAgent库发送HTTP GET请求的Perl脚本的例子: #!/usr/bin/perluse strict; use warnings; use LWP::UserAgent;# …

WPF中的虚拟化是什么

WPF(Windows Presentation Foundation)中的虚拟化是一种性能优化技术,它主要用于提高大量数据展示的效率。在WPF中,如果你有一个包含大量项的ItemsControl(例如ListBox、ListView或DataGrid等),…

从CentOS向KeyarchOS操作系统的wordpress应用迁移实战

文章目录 从CentOS向KeyarchOS操作系统的wordpress应用迁移实战一、使用浪潮信息X2Keyarch迁移工具完成操作系统的迁移1.1 迁移前的验证1.2 执行迁移评估1.3 开始迁移1.4 验证迁移结果1.5 迁移后的验证 二、总结 从CentOS向KeyarchOS操作系统的wordpress应用迁移实战 CentOS是一…

【网络】TCP协议的相关实验

TCP协议的相关实验 一、理解listen的第二个参数1、实验现象2、TCP 半连接队列和全连接队列3、关于listen的第二个参数的一些问题4、SYN洪水Ⅰ、什么是SYN洪水攻击Ⅱ、如何解决SYN洪水攻击? 二、使用Wireshark分析TCP通信流程 一、理解listen的第二个参数 在编写TCP…

为什么原生IP可以降低Google play账号关联风险?企业号解决8.3/10.3账号关联问题?

在Google paly应用上架的过程中,相信大多数开发者都遇到过开发者账号因为关联问题,导致应用包被拒审和封号的情况。 而众所周知,开发者账号注册或登录的IP地址及设备是造成账号关联的重要因素之一。酷鸟云最新上线的原生IP能有效降低账号因I…

千梦网创:实现自动化“挂机躺盈”的三种方法

在互联网众多行业中,有很多人一直在寻找所谓的“挂机躺盈”的项目,在理财领域这种收入被称为“被动收入”。 天上不会掉馅饼这是一句讲烂掉的话了,躺在家里吃白食等着钱进账是一件不可能的事情。 然而如果你看到身边有“被动收入”的例子&a…

侧面多级菜单(一个大类、一个小类、小类下多个物体)

效果: 说明: 左右侧面板使用Animator组件控制滑入滑出。左侧面板中,左的左里面是大类,左的右有绿色的小类,绿色的小类下有多个真正的UI图片按钮。 要点: 结合了一点EasyGridBuilderPro插件的UI元素&…

leetcode算法之前缀和

目录 1.DP34[模板]一维前缀和2.DP35[模板]二维前缀和3.寻找数组的中心下标4.除自身以外数组的乘积5.和为K的子数组6.和可被K整除的子数组7.连续数组8.矩阵区域和 1.DP34[模板]一维前缀和 一维前缀和 #include <iostream> #include <vector> using namespace std…

基于 React 的 HT for Web ,由厦门图扑团队开发和维护 - 用于 2D/3D 图形渲染和交互

本心、输入输出、结果 文章目录 基于 React 的 HT for Web &#xff0c;由厦门图扑团队开发和维护 - 用于 2D/3D 图形渲染和交互前言什么是 HT for WebHT for Web 的特点如何使用 HT for Web相关链接弘扬爱国精神 基于 React 的 HT for Web &#xff0c;由厦门图扑团队开发和维…

传输层——— UDP协议

文章目录 一.传输层1.再谈端口号2.端口号范围划分3.认识知名端口号4.两个问题5.netstat与iostat6.pidof 二.UDP协议1.UDP协议格式2.UDP协议的特点3.面向数据报4.UDP的缓冲区5.UDP使用注意事项6.基于UDP的应用层协议 一.传输层 在学习HTTP等应用层协议时&#xff0c;为了便于理…

【23真题】无耻!“官方”假真题!害人!

这套华侨23真题是学弟给我从考场抄出来的版本&#xff0c;我刚刚做完解析&#xff01;后台就收到了另外一份“官方华侨23真题”的投稿。我本想对对回忆版&#xff0c;补充下题干。结果一对吓一跳&#xff01;竟然一道题都不一样&#xff01;给大家看下&#xff0c;真的好逼真&a…

关于苏州立讯公司国产替代案例(使用我公司H82409S网络变压器和E1152E01A-YG网口连接器产品)

关于苏州立讯公司国产替代案例&#xff08;使用我们公司的H82409S网络变压器和E1152E01A-YG网口连接器产品&#xff09; 苏州立讯公司是一家专注于通信设备制造的企业&#xff0c;他们在其产品中选择了我们公司的H82409S网络变压器和E1152E01A-YG网口连接器&#xff0c;以实现…

用护眼灯到底好不好?适合小学生用的五款护眼台灯推荐

如果不想家里的孩子年纪小小的就戴着眼镜&#xff0c;从小就容易近视&#xff0c;那么护眼灯的选择就非常重要了&#xff0c;但是市场上那么多品类&#xff0c;价格也参差不齐&#xff0c;到底怎么选呢&#xff1f;大家一定要看完本期内容。为大家推荐五款护眼台灯。 一、书客护…

亚马逊云科技云存储服务指南

文章作者&#xff1a;Libai 高效的云存储服务对于现代软件开发中的数据管理至关重要。亚马逊云科技云存储服务提供了强大的工具&#xff0c;可以简化工作流程并增强数据管理能力。 亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏…

(二)什么是Vite——Vite 和 Webpack 区别(冷启动)

vite分享ppt&#xff0c;感兴趣的可以下载&#xff1a; ​​​​​​​Vite分享、原理介绍ppt 什么是vite系列目录&#xff1a; &#xff08;一&#xff09;什么是Vite——vite介绍与使用-CSDN博客 &#xff08;二&#xff09;什么是Vite——Vite 和 Webpack 区别&#xff0…

Mybatis-Plus最新教程

目录 原理&#xff1a;MybatisPlus通过扫描实体类&#xff0c;并基于反射获取实体类信息作为数据库信息。 ​编辑1.添加依赖 2.常用注解 3.常见配置&#xff1a; 4.条件构造器 5.QueryWrapper 6.UpdateWrapper 7.LambdaQueryWrapper:避免硬编码 8.自定义SQL 9.Iservic…

新品|CASAIM-IS(2ND)自动化智能检测系统正式上市,打造更高效、更智能、更安全新体验!

全新第二代中科广电CASAIM-IS自动化智能检测系统正式上市&#xff0c;集合CASAIM最新的“智能控制、智能成像、智能检测”三智技术&#xff0c;为中小型精密复杂工件测量及检测提供一站式高效全自动化智能检测解决方案

JWT登录认证(3拦截器)

Jwt登录认证&#xff08;拦截器&#xff09;&#xff1a; 使用拦截器统一验证令牌 登录和注册接口需要放行 interceptors.LoginInterceptor&#xff1a;&#xff08;注册一个拦截器&#xff09; package com.lin.springboot01.interceptors;import com.lin.springboot01.pojo.…

Python集成学习和随机森林算法

大家好&#xff0c;机器学习模型已经成为多个行业决策过程中的重要组成部分&#xff0c;然而在处理嘈杂或多样化的数据集时&#xff0c;它们往往会遇到困难&#xff0c;这就是集成学习&#xff08;Ensemble Learning&#xff09;发挥作用的地方。 本文将揭示集成学习的奥秘&am…

安装插件时Vscode XHR Failed 报错ERR_CERT_AUTHORITY_INVALID

安装插件时Vscode XHR Failed 报错ERR_CERT_AUTHORITY_INVALID 今天用vscode 安装python插件时报XHR failed,无法拉取应用商城的数据&#xff0c; 报的错如下&#xff1a; ERR_CERT_AUTHORITY_INVALID 翻译过来就是证书有问题 找错误代码的方法&#xff1a; 打开vscode, 按F1…