【无标题】chapter6卷积

此例以说明全连接层处理图片的时候会遇到参数过多 模型过大的问题
参数比要研究的物体总数还多
卷积,特殊的全联接层
平移不变形,局部性

原本权重为二维(输入和输出全联接,想想下表组合,就是个二维的矩阵),输入输出为一维向量,可以理解为从输入和输出分别选一个节点。
现在权重变为4维,输入输出为二维矩阵,可以理解成从输入和输出分别选一个包含宽高的节点。

输入和输出都变成了二维的,权重表示使用下标,要显示输入输出的高宽,所以权重就是四维的

K阶张量与M阶张量(M<K)做内积,得到的正是K-M阶张量.

参数数量不变 保留了输入的空间信息

不对啊,一个二维的商量乘以一个四维的商量结果还是一个四维的张亮怎么得到的二维的矩阵?

对的,就是输入输出的维度变了。那么为什么要变呢?因为卷积是可以保留空间信息的,是二维的“扫”过去的,这样子二维的输入输入是可以保留一个位置的相对信息的

输入和输出都变成了二维的,权重表示使用下标,要显示输入输出的高宽,所以权重就是四维的

此时的w就是卷积核,x是图片上的某一个像素点, 乘积之后再相加,就是一个卷积的过程。

这里可以转换成4D张量,应该是因为用了batch learning,每个输入有n个样本,每个样本是一张图,一张图再转换成一个矩阵,所以隐藏层的每个神经元的权重就变成了3D张量,整个隐藏单元就成4D了

Wijkl里面的kl是对应X的kl也就是输入的矩阵的元素,ij代表卷积核里面和kl相乘的那个值,因为卷积核的值不会变但是会滑动所以sigma下标是kl,实际就是滑动卷积的意思

i,j对应filter内参数的位置,k,l是输入矩阵输入特征的位置,第一个等号说明一个Wi,j要和所有特征相乘

但参数v_{i,j,a,b} 考虑绝对位置 (i,j) 和相对位置(a,b)

根据平移不变性,我们不希望v考虑(i,j), 所以让v对(i,j)不变,只随(a,b)变

a,b两个维度代表的是之前的权重w,但是现在叫做卷积核,而i,j代表遍历每个不同的权重w使得做到滑动的效果,而去掉i,j则是代表固定卷积核,所以可以去掉i,j

这里说的意思应该是,譬如我的v是一个找猫猫的特征器,这个识别猫特征器不会因为图片中猫藏的位置不一样而变化

平移不变性,其实就是代表我这个卷积核提取的特征是固定的,我一个卷积核只要参数不变,从一张图里面提取的特征就是不变的

平移不变性是卷积过程中卷积核不变,共享同一组权重,局部性是指不考虑整个图像,仅计算当前2*2的窗口。这个窗口有一个官方名称为感受野

神经网络去学一些核来得到想要的输出
边缘检测,锐化,模糊

高斯模糊就是平均池化嘛

卷积核肯定是自己学,因为卷积核中每个元素都代表一个weight

卷积核:有正有负和为0是边缘检测

全为正和为1是均值滤波,高斯权重的均值滤波是高斯平滑/模糊

是不是说卷积时他的核需要逆时针旋转180°,相关不需要

cnn中的卷积核旋转180度就是数学上的卷积

不是180度是水平竖直翻转,沿着副对角线做对称翻转。左右上下反一下

如果不懂为什么是负号的,可以去看王木头学科学关于卷积的视频

说通信卷机和这里根本不一样的,我觉得你卷积根本没理解,这就是一样的,只是少了一个负号,其实本质一样,都是一个滤波器,只是这里的滤波器可以通过神经网络学习

矩阵乘法是每行每列都做点积,得到的是矩阵,矩阵中每个元素都是行列的点积。
哈达玛积就是对应位置元素乘积,没有求和,得到的也是矩阵

卷积需要将那个核旋转180°获得

kernel_size是一个向量:[k_h,k_w],它表示卷积核的大小/维数

不一定,比如阿尔法狗卷积核就不是矩形
竖直边缘,黑变白还是白变黑

其实这个矩阵为什么可以做垂直检测,可以去找opencv课程,里面需要接触一些xx算子,会详细解释为什么这种矩阵可以提取边缘图像

通道维:通道数,RGB图3通道,灰度图1通道,批量维就是样本维,就是样本数

反了!前面是批量维,后面是通道维度

(批量大小、通道、高度、宽度)
手写训练逻辑,迭代十次

前面的说错了吧?谁告诉你Y是随机给的?Y是前面用[1,-1卷积出来的结果,并不是随机给的]

这里直接用了梯度下降,没有考虑优化

6,8是X的形状;1,2是K的形状;Y的形状就能推出来是(6-1+1,8-2+1)即(6,7)

每加一层输入大小减去4(5-1)

数据量大的时候,这点损失不影响

本质就是信息有损压缩啊

下图不重要但强迫症偏要扪清这加减运算
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/195089.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ResNet 原论文及原作者讲解

ResNet 论文摘要1. 引入2. 相关工作残差表示快捷连接 3. 深度残差学习3.1. 残差学习3.2. 快捷恒等映射3.3. 网络体系结构普通网络 plain network残差网络 residual network 3.4. 实施 4. 实验4.1. ImageNet分类普通的网络 plain network残差网络 residual network恒等vs.快捷连…

修改 jar 包中的源码方式

在我们开发的过程中&#xff0c;我们有时候想要修改jar中的代码&#xff0c;方便我们调试或或者作为生产代码打包上线&#xff0c;但是在IDEA中&#xff0c;jar包中的文件都是read-only&#xff08;只读模式&#xff09;。那如何我们才能去修改jar包中的源码呢&#xff1f; 1.…

Python winreg将cmd/PowerShell(管理员)添加到右键菜单

效果 1. 脚本 用管理员权限运行&#xff0c;重复执行会起到覆盖效果&#xff08;根据sub_key&#xff09;。 icon自己设置。text可以自定义。sub_key可以改但不推荐&#xff08;避免改成和系统已有项冲突的&#xff09;。command不要改。 from winreg import *registry r&q…

第28章_mysql缓存策略

文章目录 MySQL缓存方案目的分析缓存层作用举例 缓存方案选择场景分析 提升MySQL访问性能的方式MySQL主从复制读写分离连接池异步连接 缓存方案缓存和MySQL一致性状态分析制定读写策略 同步方案canalgo-mysql-transfer 缓存方案的故障问题及解决缓存穿透缓存击穿缓存雪崩缓存方…

「分享学习」SpringCloudAlibaba高并发仿斗鱼直播平台实战完结

[分享学习]SpringCloudAlibaba高并发仿斗鱼直播平台实战完结 第一段&#xff1a;简介 Spring Cloud Alibaba是基于Spring Cloud和阿里巴巴开源技术的微效劳框架&#xff0c;普遍应用于大范围高并发的互联网应用系统。本文将引见如何运用Spring Cloud Alibaba构建一个高并发的仿…

基于JavaWeb+SSM+社区居家养老服务平台—颐养者端微信小程序系统的设计和实现

基于JavaWebSSM社区居家养老服务平台—颐养者端微信小程序系统的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 在复杂社会化网络中&#xff0c;灵活运用社会生活产生的大数据&am…

理解 R-CNN:目标检测的一场革命

一、介绍 对象检测是一项基本的计算机视觉任务&#xff0c;涉及定位和识别图像或视频中的对象。多年来&#xff0c;人们开发了多种方法来应对这一挑战&#xff0c;但基于区域的卷积神经网络&#xff08;R-CNN&#xff09;的发展标志着目标检测领域的重大突破。R-CNN 及其后续变…

php-cli

//运行index.php ./php index.php//启动php内置服务器 ./php -S 0.0.0.0:8080//启动内置服务在后台运行&#xff0c;日志输出到本目录下的server.log nohup ./php -S 0.0.0.0:8080 -t . > server.log 2>&1 &# 查找 PHP 进程 ps aux | grep "php -S 0.0.0.0:…

用Postman发送xml数据

启动Postman&#xff1a; 点击左上角的“New”&#xff0c;在弹出窗中选择HTTP&#xff1a; 选择POST方法&#xff1a; 点击Body&#xff1a; 选择raw&#xff1a; 在右侧的下拉列表中选择XML&#xff1a; 在下面的输入框中输入或者从其它地方拷贝XML文本&#xff1a;…

玩具、儿童用品、儿童服装上亚马逊TEMU平台CPC认证办理

CPC认证是Childrens Product Certificate的简称&#xff0c;即儿童产品证书。它是美国强制性法规CPSIA要求的一部分&#xff0c;该法规主要针对12岁及以下儿童使用的产品&#xff0c;如玩具、儿童用品、儿童服装等。 一、儿童小汽车CPC测试项目可能会因产品标准和法规的不同而…

12-2- DCGAN -简单网络-卷积网络

功能 随机噪声→生成器→MINIST图像。 训练方法 0 损失函数:gan的优化目标是一个对抗损失,是二分类问题,用BCELoss 1 判别器的训练,首先固定生成器参数不变,其次判别器应当将真实图像判别为1,生成图像判别为0 loss=loss(real_out, 1)+loss(fake_out, 0) 2 生成器的…

CocosCreator3.8神秘面纱 CocosCreator 项目结构说明及编辑器的简单使用

我们通过Dashboard 创建一个2d项目&#xff0c;来演示CocosCreator 的项目结构。 等待创建完成后&#xff0c;会得到以下项目工程&#xff1a; 一、assets文件夹 assets文件夹&#xff1a;为资源目录&#xff0c;用来存储所有的本地资源&#xff0c;如各种图片&#xff0c;脚本…

BIO、NIO、AIO三者的区别及其应用场景(结合生活例子,简单易懂)

再解释三者之前我们需要先了解几个概念&#xff1a; 阻塞、非阻塞&#xff1a;是相较于线程来说的&#xff0c;如果是阻塞则线程无法往下执行&#xff0c;不阻塞&#xff0c;则线程可以继续往下 执行。同步、异步&#xff1a;是相较于IO来说的&#xff0c;同步需要等待IO操作完…

ncbi-datasets-cli-高效便捷下载NCBI数据

文章目录 简介安装datasets download下载基因组/基因序列按照GCA list文件编号下载下载大基因组genome完整参数gene参数 datasets summary下载元数据dataformat将json转换成表格格式通过json文件解析其他字段问题 简介 NCBI Datasets 可以轻松从 NCBI 数据库中收集数据。使用命…

navigator.geolocation.getCurrentPosition在谷歌浏览器不执行的问题

/*** 获取我的位置*/getNavigatorLocation: function () {navigator.geolocation.getCurrentPosition(function (success) {console.log(inner>>>, success);if (success && success.coords) {var data success.coords;var point "POINT(" data.…

鉴源论坛 · 观模丨软件单元测试真的有必要吗?(下)

作者 | 包丹珠 上海控安产品总监 版块 | 鉴源论坛 观模 社群 | 添加微信号“TICPShanghai”加入“上海控安51fusa安全社区” “软件单元测试真的有必要吗&#xff1f;&#xff08;上&#xff09;”一文中&#xff0c;着重探讨了单元测试的重要性及其正面临的困境&#xff0c…

vue下载xlsx表格

vue下载xlsx表格 // 导入依赖库 import XLSX from xlsx; import FileSaver from file-saver; methods:{btn(){let date new Date()let Y date.getFullYear() -let M (date.getMonth() 1 < 10 ? 0 (date.getMonth() 1) : date.getMonth() 1) -let D (date.getDat…

220V交流转直流的简易电源设计

220V交流转直流的简易电源设计 设计简介设计原理电路图变压器电路交流转直流电路3.3V电源接口电路 PCB3D图 实践检验 设计简介 通过模拟电路的相关知识&#xff0c;尝试将220V的交流电转化为我们指定电压的直流电。 设计原理 将220V交流电转化为直流电的方法常用的有通过变压器…

LeetCode---117双周赛---容斥原理

题目列表 2928. 给小朋友们分糖果 I 2929. 给小朋友们分糖果 II 2930. 重新排列后包含指定子字符串的字符串数目 2931. 购买物品的最大开销 一、给小朋友们分糖果I 看一眼数据范围&#xff0c;如果没有啥其他想法思路就直接暴力&#xff0c;时间复杂度O(n^2) 思路&#x…