keras转onnx,TensorFlow转tf.keras.models.load_model,onnx精度转换

参考:

https://blog.csdn.net/Deaohst/article/details/126864267

转onnx

别直接转onnx。

先转PB:

import tensorflow as tfmodel_path = './models/model.h5'                    # 模型文件
model = tf.keras.models.load_model(model_path)
model.save('tfmodel', save_format='tf')

再转onnx:

 python -m tf2onnx.convert --saved-model ./tfmodel/ --output ./models/model.onnx --opset 12 --verbose

转化成功:
在这里插入图片描述

将原结果和onnx推理结果比对:
原结果:
{‘drawings’: 0.00619311910122633, ‘hentai’: 0.00011550176714081317, ‘neutral’: 0.992009162902832, ‘porn’: 0.0008918801322579384, ‘sexy’: 0.0007902580546215177}}
onnx推理代码和推理结果:

import cv2
import numpy as np
import onnxruntimeIMAGE_DIM = 299  # required/default image dimensionalitydef load_single_image(image_path, image_size, verbose=True):try:if verbose:print(image_path, "size:", image_size)# Load image using OpenCVimage = cv2.imread(image_path)image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # Convert to RGBimage = cv2.resize(image, (image_size, image_size))# Preprocess the imageimage = image.astype(np.float32) / 255.0return np.expand_dims(image, axis=0), image_pathexcept Exception as ex:print("Image Load Failure: ", image_path, ex)return None, None# Load ONNX model
onnx_model_path = './models/model.onnx'
ort_session = onnxruntime.InferenceSession(onnx_model_path)# Example usage:
image_path_to_load = "images/20230903000800.jpg"
loaded_image, loaded_image_path = load_single_image(image_path_to_load, IMAGE_DIM)if loaded_image is not None:# Perform inferenceinput_name = ort_session.get_inputs()[0].nameoutput_name = ort_session.get_outputs()[0].nameinput_data = loaded_image# Run the ONNX modelresult = ort_session.run([output_name], {input_name: input_data})print(result[0].tolist())

images/20230903000800.jpg size: 299
[[0.004163397941738367, 0.00018479839491192251, 0.9918997287750244, 0.0020591376814991236, 0.0016930525889620185]]

结果不是很吻合,但也大差不差了。

转fp16 onnx

安装:

pip install onnxmltools

执行脚本:

import onnxmltools
# 加载float16_converter转换器
from onnxmltools.utils.float16_converter import convert_float_to_float16
# 使用onnxmltools.load_model()函数来加载现有的onnx模型
# 但是请确保这个模型是一个fp32的原始模型
onnx_model = onnxmltools.load_model('./models/model.onnx')
# 使用convert_float_to_float16()函数将fp32模型转换成半精度fp16
onnx_model_fp16 = convert_float_to_float16(onnx_model)
# 使用onnx.utils.save_model()函数来保存,
onnxmltools.utils.save_model(onnx_model_fp16, './models/model_fp16.onnx')

推理结果:

images/20230903000800.jpg size: 299
[[0.004119873046875, 0.00018489360809326172, 0.99169921875, 0.002071380615234375, 0.001697540283203125]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/195583.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jbase虚拟M层的设计

对于只是自己产品内部使用的打印程序来说(比如打印收费单,打印结算单等),打印逻辑写在js,获取其他层都是没毛病的。但是对于类型检验报告这种打印来说,打印格式控制逻辑写在js层是百分百不行的。因为检验报…

合众汽车选用风河Wind River Linux系统

导读合众新能源汽车股份有限公司近日选择了Wind River Linux 用于开发合众智能安全汽车平台。 合众智能安全汽车平台(Hozon Automo-tive Intelligent Security Vehicle Plat-form)是一个面向高性能服务网关及车辆控制调度的硬件与软件框架,将于2024年中开始投入量产…

线性表的概念

目录 1.什么叫线性表2.区分线性表的题 1.什么叫线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串… 线性表在逻辑上是…

【面试】测试/测开(未完成版)

1. 黑盒测试方法 黑盒测试:关注的是软件功能的实现,关注功能实现是否满足需求,测试对象是基于需求规格说明书。 1)等价类:有效等价类、无效等价类 2)边界值 3)因果图:不同的原因对应…

《硅基物语.AI写作高手:从零开始用ChatGPT学会写作》《从零开始读懂相对论》

文章目录 《硅基物语.AI写作高手:从零开始用ChatGPT学会写作》内容简介核心精华使用ChatGPT可以高效搞定写作的好处如下 《从零开始读懂相对论》内容简介关键点书摘最后 《硅基物语.AI写作高手:从零开始用ChatGPT学会写作》 内容简介 本书从写作与ChatG…

如何在Docker部署Draw.io绘图工具并远程访问

文章目录 前言1. 使用Docker本地部署Drawio2. 安装cpolar内网穿透工具3. 配置Draw.io公网访问地址4. 公网远程访问Draw.io 前言 提到流程图,大家第一时间可能会想到Visio,不可否认,VIsio确实是功能强大,但是软件为收费&#xff0…

matlab二维曲面散点图插值方法

在 MATLAB 中,你可以使用以下函数进行二维曲面散点插值: griddata: 该函数可以在散点数据上进行二维插值,生成平滑的曲面。它支持多种插值方法,包括三次样条插值、最近邻插值、线性插值和自然邻近法插值。 scatteredInterpolant:…

大数据基础设施搭建 - Hadoop

文章目录 一、下载安装包二、上传压缩包三、解压压缩包四、配置环境变量五、测试Hadoop5.1 测试hadoop命令5.2 测试wordcount案例5.2.1 创建wordcount输入文本信息5.2.2 执行程序5.2.3 查看结果 六、分发压缩包到集群中其他机器6.1 分发压缩包6.2 解压压缩包6.3 配置环境变量 七…

Go ZIP压缩文件读写操作

创建zip文件 golang提供了archive/zip包来处理zip压缩文件,下面通过一个简单的示例来展示golang如何创建zip压缩文件: func createZip(filename string) {// 缓存压缩文件内容buf : new(bytes.Buffer)// 创建zipwriter : zip.NewWriter(buf)defer writ…

flowable消息事件

一&#xff1a;启动事件 定义消息。 引用消息。 <startEvent id"msgStart" name"消息启动事件" isInterrupting"true"><messageEventDefinition messageRef"myMsgStart"></messageEventDefinition> </startE…

【ROS导航Navigation】五 | 导航相关的消息 | 地图 | 里程计 | 坐标变换 | 定位 | 目标点和路径规划 | 激光雷达 | 相机

致谢&#xff1a;ROS赵虚左老师 Introduction Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 参考赵虚左老师的实战教程 一、地图 nav_msgs/MapMetaData 地图元数据&#xff0c;包括地图的宽度、高度、分辨率等。 nav_msgs/OccupancyGrid 地图栅格数据&#…

reactive和effect,依赖收集触发依赖

通过上一篇文章已经初始化项目&#xff0c;集成了ts和jest。本篇实现Vue3中响应式模块里的reactive方法。 前置知识要求 如果你熟练掌握Map, Set, Proxy, Reflect&#xff0c;可直接跳过这部分。 Map Map是一种用于存储键值对的集合&#xff0c;并且能够记住键的原始插入顺…

【6】Spring Boot 3 集成组件:knift4j+springdoc+swagger3

目录 【6】Spring Boot 3 集成组件&#xff1a;knift4jspringdocswagger3OpenApi规范SpringFox Swagger3SpringFox工具&#xff08;不推荐&#xff09; Springdoc&#xff08;推荐&#xff09;从SpringFox迁移引入依赖配置jAVA Config 配置扩展配置&#xff1a;spring securit…

Linux安装DMETL5与卸载

Linux安装DMETL5与卸载 环境介绍1 DM8数据库配置1.1 DM8数据库安装1.2 初始化达梦数据库1.3 创建DMETL使用的数据库用户 2 配置DMETL52.1 解压DMETL5安装包2.2 安装调度器2.3 安装执行器2.4 安装管理器2.5 启动dmetl5 调度器2.6 启动dmetl5 执行器2.7 启动dmetl5 管理器2.8 查看…

计算机毕业设计选题推荐-一周穿搭推荐微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

系列二十六、idea安装javap -c

一、概述 javap -c是一个能够将.java文件反编译为.class文件的指令&#xff0c;例如我在idea中编写了一个Car.java文件&#xff0c;我想看看这个类被编译后长什么样的&#xff0c;就可以使用该指令进行查看。 二、配置 2.1、 Java Bytecode Decompiler File>Settings>Pl…

TMS320F28335使用多个串口时,SCIRXST Register出现错误

TMS320F28335使用多个串口时&#xff0c;SCIRXST Register出现错误 void ClearErrorState(void) {if((SciaRegs.SCIRXST.bit.FE 1)||(SciaRegs.SCIRXST.bit.BRKDT 1)){SciaRegs.SCICTL1.bit.SWRESET 0;SciaRegs.SCICTL1.bit.SWRESET 1;}if((ScibRegs.SCIRXST.bit.FE 1)||(S…

报错资源不足,k8s使用containerd运行容器修改挂载点根目录换成/home

运行k8s一段时间发现存储不足报错 发现这里用的是根路径的挂载&#xff0c;修改一下

交易者最看重什么?anzo Capital这点最重要!

交易者最看重什么&#xff1f;有人会说技术&#xff0c;有人会说交易策略&#xff0c;有人会说盈利&#xff0c;但anzo Capital认为Vishal 最看重的应该是眼睛吧&#xff01; 29岁的Vishal Agraval在9年前因某种原因失去了视力&#xff0c;然而&#xff0c;他的失明并未能阻…

Databend 与海外某电信签约:共创海外电信数据仓库新纪元

为什么选择 Databend 海外某电信面临的主要挑战是随着业务量的增加&#xff0c;传统的 Clickhouse Hive 方案在数据存储和处理上开始显露不足。 原来的大数据分析采用的 Clickhouse Hive 方案进行离线的实时报表。但随着业务量的上升后&#xff0c;Hive的数据存储压力变大&…