生成对抗网络Generative Adversarial Network,GAN

Basic Idea of GAN

  • Generation(生成器)

   Generation是一个neural network,它的输入是一个vector,它的输出是一个更高维的vector,以图片生成为例,输出就是一张图片,其中每个维度的值代表生成图片的某种特征。

  • Discriminator(判别器)

   Discriminator也是一个neural network,它的输入是一张图片,输出是一个scalar,scalar的数值越大说明这张图片越像真实的图片。

  • Generation和Discriminator两者的关系

举了鸟和蝴蝶例子说明Generation和Discriminator之间的关系是相互对抗,相互提高。然后提出两个问题:

  1. Generator为什么不自己学,还需要Discriminator来指导。
  2. Discriminator为什么不自己直接做。

Algorithm(算法说明)

首先要随机初始化generator 、discriminator的参数;

然后在每一个training iteration要做两件事:

(1)固定generator的参数,然后只训练discriminator。

将generator生成的图片与从database sample出来的图片放入discriminator中训练,如果是generator生成的图片就给低分,从database sample出来的图片就给高分。

(2)固定discriminator的参数,然后只训练generator。

把generator生成的图片当做discriminator的输入,训练目标是让输出越大越好。

具体算法如下:

训练D(固定G):

  1. 首先从database中抽取m个样本。
  2. 从一个分布中抽取m个vector z。
  3. 将z输入generator,生成m张图片x
  4. 计算损失,最大化损失。

训练G(固定D):

  1. 随机产生m个噪声,通过generator得到图片G(z);
  2. 然后经过discriminator得到D(G(z)),更改G中的参数,使得它的得分越高越好。

GAN as structured learning

结构化学习的输入和输出多种多样,可以是序列(sequence)到序列,序列到矩阵(matrix),矩阵到图(graph),图到树(tree)等。例如,机器翻译、语音识别、聊天机器人、文本转图像等。GAN也是结构化学习的一种。

  • Structured Learning面临的挑战
  1. One-shot/Zero-shot Learning:比如在分类任务中,有些类别没有数据或者有很少的数据。
  2. 机器需要创造新的东西。如果把每个可能的输出都视为一个“class”,由于输出空间很大,大多数“class”都没有训练数据,也,这就导致了机器必须在testing时创造新的东西。
  3. 机器需要有规划的概念,要有大局观。因为输出组件具有依赖性,所以应全局考虑它们。
  • Structured Learning Approach

传统的structured learning主要有两种做法:Bottom up 和 Top down。

Bottom up:机器逐个产生object的component。

Top down:从整体来评价产生的component的好坏。

Generator可以视为是一个Bottom Up的方法,discriminator可以视为是一个Top Down的方法,把这两个方法结合起来就是GAN。

Can Generator learn by itself

可以用监督学习的方法来对generator进行训练,但是还会存在一个问题:表示图片的code从哪里来。如果随机产生,训练起来可能非常困难。因为如果两种图片很像,它们输入vector差异很大的话,就很难去训练。

可以通过训练一个encoder,得到相应的code。但是存在的问题就是:Vector a 输出结果是向左的1,vector b 输出结果是向右的1。若把a、b平均作为输入,则输出不一定是数字,可以使用VAE来解决这个问题。

  • VAE (Variational Auto-Encoder,变分编码器)

VAE不仅产生一个code还会产生每一个维度的方差;然后将方差和正态分布中抽取的噪声进行相乘,之后加上code上去,就相当于加上noise的code。

  • VAE的缺陷

在生成图片时,不是单纯的让生成结果与真实结果越接近越好,还要保证整幅图片符合现实规律。

假设Layer L-1的值是给定的,则Layer L每一个dimension的输出都是独立的,无法相互影响。因此只有在L后面在加几个隐藏层,才可以调整第L层的神经元输出。也就是说,VAE要想获得GAN的效果,它的网络要比GAN要深才行。

下图中绿色是目标,蓝色是VAE学习的结果。VAE在做一些离散的目标效果不好。

Can Discriminator generate

Discriminator就是给定一个输入,输出一个分数。对discriminator来说,要考虑component和component之间的联系就比较容易。比如有一个滤波器,它会去检索有没有独立的像素点,有的话就是低分。

假如有一个discriminator,它能够鉴别图片的好坏,就可以用这个discriminator去生成图片。穷举所有的输入x,比较discriminator给出的分数,找到分数最高的就是discriminator的生成结果。

  • 训练discriminator
  1. 首先给定一些正样本,随机产生一些负样本。
  2. 在每一个iteration里面,训练出discriminator能够鉴别正负样本。
  3. 然后用训练出来的discriminator生成图片当做负样本。
  4. 开始迭代。

从可视化和概率的角度来看一下整个过程。蓝色的是discriminator生成图片的分布,绿色的是真实图片分布。训练discriminator给绿色的高分,蓝色的低分。然后寻找discriminator除了真实图片之外,得分最大高的地方把它变成负样反复迭代,最终正样本和负样本就会重合在一起。

  • Generator v.s. Discriminator

generator:很容易生成图片,但是它不考虑component之间的联系。只学到了目标的表象,没有学到精神。

Discriminator:能够考虑大局,但是很难生成图片。

  • Generator + Discriminator

Generator就是取代了这个argmax的过程。GAN的优点如下:

从discriminator来看,利用generator去生成样本,去求解argmax问题,更加有效。

从generator来看,虽然在生成图片过程中的像素之间依然没有联系,但是它的图片好坏是由有大局观的discriminator来判断的。从而能够学到有大局观的generator。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/196802.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】图的存储结构(邻接矩阵)

一.邻接矩阵 1.图的特点 任何两个顶点之间都可能存在边,无法通过存储位置表示这种任意的逻辑关系。 图无法采用顺序存储结构。 2.如何存储图? 将顶点与边分开存储。 3.邻接矩阵(数组表示法) 基本思想: 用一个一维数…

C#特性(Attribute)

C#特性(Attribute)是一种在程序中添加元数据的机制,它可以为代码提供额外的信息和指示。通过使用特性,我们可以为类、方法、属性等元素添加标记,以便在运行时进行更多的操作和决策。 C#特性是一种声明式编程的工具&…

解决 uniapp 开发微信小程序 不能使用本地图片作为背景图 问题

参考博文:uniapp微信小程序无法使用本地静态资源图片(背景图在真机不显示)的解决方法_javascript技巧_脚本之家 问题:uniapp 开发微信小程序,当使用本地图片作为 background-image 时,真机无法显示 解决: 方法一&am…

Redis新操作

1.Bitmaps 1.1概述 Bitmaps可以对位进行操作,实际上它就是一个字符串,可以将Bitmaps想象为一个以位为单位的数组,数组中的每个元素只能存储0或者1,数组的下标在Bitmaps被称为偏移量。 setbit key offset value:设置o…

32位单片机PY32F040,主频72M,外设丰富,支持断码LCD

PY32F040 系列微控制器采用高性能的 32 位 ARM Cortex-M0 内核,宽电压工作范围的 MCU。嵌入高达 128 Kbytes flash 和 16 Kbytes SRAM 存储器,最高工作频率 72 MHz。LQFP64封装两块出头就可以拿到,我们还有开发板和开发资料帮助客户更好的开发。 PY32F040 系列微控…

一起Talk Android吧(第五百五十三回:解析Retrofit返回的数据)

文章目录 1. 知识回顾2. 解析方法2.1 解析有效数据2.2 解析错误数据3. 示例代码4. 经验与总结4.1 经验分享4.2 内容总结各位看官们大家好,上一回中咱们说的例子是"Retrofit的基本用法",本章回中介绍的例子是" 如何解析Retrofit返回的数据"。闲话休提,言…

【AI视野·今日Robot 机器人论文速览 第六十三期】Thu, 26 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Fri, 27 Oct 2023 Totally 27 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers 6-DoF Stability Field via Diffusion Models Authors Takuma Yoneda, Tianchong Jiang, Gregory Shakhnarovich, Matthew R. …

Windows安装nvm【node.js版本管理工具】

目录 下载安装包 安装 配置 配置node的国内镜像源 配置npm的国内镜像源 常用命令 查看可安装的node版本 安装指定的版本 查看已有的node版本列表 切换版本 下载安装包 https://github.com/coreybutler/nvm-windows/releases/tag/1.1.11 安装 安装过程就不贴了&#xff0…

单元测试,集成测试,系统测试的区别是什么?

实际的测试工作当中,我们会从不同的角度对软件测试的活动进行分类,题主说的“单元测试,集成测试,系统测试”,是按照开发阶段进行测试活动的划分。这种划分完整的分类,其实是分为四种“单元测试,…

2023最新最全【OpenMV】 入门教程

1. 什么是OpenMV OpenMV 是一个开源,低成本,功能强大的 机器视觉模块。 OpenMV上的机器视觉算法包括 寻找色块、人脸检测、眼球跟踪、边缘检测、标志跟踪 等。 以STM32F427CPU为核心,集成了OV7725摄像头芯片,在小巧的硬件模块上&a…

M2 Mac Xcode编译报错 ‘***.framework/‘ for architecture arm64

In /Users/fly/Project/Pods/YYKit/Vendor/WebP.framework/WebP(anim_decode.o), building for iOS Simulator, but linking in object file built for iOS, file /Users/fly/Project/Pods/YYKit/Vendor/WebP.framework/WebP for architecture arm64 这是我当时编译模拟器时报…

2.2 调用星火大模型的API

调用星火大模型的API 1 申请API调用权限:2 调用原生星火 API3 统一API调用方式 项目仓库地址:https://github.com/datawhalechina/llm-universe 讯飞星火认知大模型,由科大讯飞于2023年5月推出的中文大模型,也是国内大模型的代表…

2.3 调用智谱 API

调用智谱 API 1 申请调用权限2 调用智谱 AI API3 使用 LangChain 调用智谱 AI参考: 智谱 AI 是由清华大学计算机系技术成果转化而来的公司,致力于打造新一代认知智能通用模型。公司合作研发了双语千亿级超大规模预训练模型 GLM-130B,并构建了…

PostgreSQL基于Citus实现的分布式集群

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

JQuery ajax 提交数据提示:Uncaught TypeError:Illegal invocation

JQuery ajax 提交数据提示:Uncaught TypeError:Illegal invocation 1 问题描述 用jQuery Ajax向DRF接口提交数据的时候,console提示:Uncaught TypeError:Illegal invocation(未捕获的异常:非法调用)。 这个问题可能有两种原因导…

vue实现调用手机拍照、录像功能

目录 前言 准备工作 在这个示例中,我们将使用Vue.js框架来实现我们的目标。如果你还不熟悉Vue.js,推荐先学习一下Vue.js的基础知识。 接下来,我们需要创建一个基于Vue.js的项目。你可以使用Vue CLI来创建一个全新的Vue项目:# …

小程序授权获取昵称

wxml: <form bindsubmit"formsubmit"><view style"width: 90%;display: flex;margin-left: 5%;"><view class"text1">昵称&#xff1a;</view><input style"width: 150px;margin-left: 30px;margin-top: 30px;…

【Java 进阶篇】唤醒好运:JQuery 抽奖案例详解

在现代社交网络和电商平台中&#xff0c;抽奖活动成为吸引用户、提升用户参与度的一种常见手段。通过精心设计的抽奖页面&#xff0c;不仅可以增加用户的互动体验&#xff0c;还能在一定程度上提高品牌的知名度。本篇博客将通过详细解析 JQuery 抽奖案例&#xff0c;带领你走进…

Flutter 应用启动从闪屏页短暂黑屏再到第一个页面

由于应用初始状态启动会有白屏现象&#xff0c;便使用 flutter_native_splash 2.3.5 插件生成了启动相关的配置&#xff0c;并且按照示例使用了 import package:flutter_native_splash/flutter_native_splash.dart;void main() {WidgetsBinding widgetsBinding WidgetsFlutte…

【Java 进阶篇】插上翅膀:JQuery 插件机制详解

在前端开发中&#xff0c;JQuery 作为一个广泛应用的 JavaScript 库&#xff0c;为开发者提供了丰富的工具和方法&#xff0c;简化了 DOM 操作、事件处理等繁琐的任务。而在这个庞大的生态系统中&#xff0c;插件机制是 JQuery 的一项重要特性&#xff0c;使得开发者能够轻松地…