Linux下非root用户安装CUDA

目录

前言

参考链接

步骤

一. 首先,需要查看系统版本:

二. 安装包下载。

下载CUDA:

 cuDNN下载

三. 开始安装CUDA和cuDNN 

安装CUDA

修改环境变量

安装 cuDNN

 查看是否安装成功,输入nvcc -V 


前言

由于一些代码实现(CUDA写的外部扩展包)对cuda版本要求比较高,因此,我在实验室Linux系统下默认的cuda版本上,没办法编译扩展包。需要重新安装特定版本的cuda。

参考链接

非root用户安装cuda与cudnn

非root用户在linux下安装CUDA10.1

步骤

一. 首先,需要查看系统版本:

lsb_release -a

  • 查看GPU信息
nvidia-smi

 GPU驱动版本为525.147.05
  最高支持CUDA版本12.0,不可以下载高于此版本的CUDA,否则需要升级驱动。

二. 安装包下载。

下载CUDA:

CUDA Toolkit Archive | NVIDIA Developer

 此时你可以选择在服务器上输入

wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run

在服务器上进行下载,也可以选择在浏览器中输入wget后面的网址,然后在本地进行下载再上传至服务器。

 cuDNN下载

通过cuDNN Download下载CUDNN,这个下载需要注册账号(简单几步注册登录即可),登录以后,如下图选择合适的CUDA版本对应的CUDNN并选择CUDNN Library for Linux,开始下载。

 下载好以后可以将文件解压缩后压缩为zip格式后上传至服务器。

三. 开始安装CUDA和cuDNN 

现在在我们的服务器中已经有了CUDA和cuDNN的安装包了

安装CUDA

cuda可执行权限

chmod +x cuda_11.1.0_455.23.05_linux.run

运行run文件

./ cuda_11.1.0_455.23.05_linux.run

通过键盘方向键(↑,↓)和Enter键可以进行选择和进入(确定)。选择Continue并进入

 输入accept进入

 利用上下键与Enter勾选对话框,只安装CUDA Toolkit。

选择Options并进入,然后我们需要修改Toolkit Options 、Library install path这两项的路径。

 修改Toolkit Options路径,选择Change Toolkit Install Path 

 将默认路径修改至个人目录下,点击Enter确认

将下面的选项取消选定,选择Done,确认退出

 选择Library install path (Blank for system default)

 添加之前一样的路径并Enter确认退出

选择Done返回上一层目录,修改路径完成,选择Install开始安装 

 出现如下所示的安装信息则说明安装成功

修改环境变量

输入vim ~/.bashrc进行环境变量的修改;

添加一下信息(每个人的路径是不同的,我的是/data/dwl/cuda-11.1.0/)并保存退出。

export CUDA_HOME=$CUDA_HOME:/data/dwl/cuda-11.1.0
export PATH="/data/dwl/cuda-11.1.0/bin:$PATH"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/dwl/cuda-11.1.0/lib64

 

输入source ~/.bashrc 

注意 :

vim编辑器使用指南:

  • vi XXX //打开并编辑文件
  • 按i进入编辑模式
  • 编辑好文本后按Esc,退出插入状态。
  • 保存退出:输入冒号,输入WQ(write,quit)或X(x==wq)回车,或者按了ESC后,直接按shift+zz,或者切换到大写模式按ZZ
  • 文本没改动退出:Esc+冒号+q
  • 不保存退出:Esc+冒号+q!

安装 cuDNN

解压cuDNN

复制文件到CUDA安装目录

cp cudnn-*-archive/include/cudnn*.h /data/dwl/cuda-11.1.0/include
$ cp -P cudnn-*-archive/lib/libcudnn* /data/dwl/cuda-11.1.0/lib64
$ chmod a+r /data/dwl/cuda-11.1.0/include/cudnn*.h /data/dwl/cuda-11.1.0/lib64/libcudnn*

 最后一句是修改权限,cudnn安装完成

 查看是否安装成功,输入nvcc -V 

 可使用which nvcc查看cuda的安装路径

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197287.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息消费过程

前言 本文介绍下Kafka消费过程, 内容涉及消费与消费组, 主题与分区, 位移提交,分区再平衡和消费者拦截器等内容。 消费者与消费组 Kafka将消费者组织为消费组, 消息只会被投递给消费组中的1个消费者。因此, 从不同消费组中的消费者来看, Kafka是多播(Pub/Sub)模式…

十三、Docker的安装

0.安装Docker Docker 分为 CE 和 EE 两大版本。CE 即社区版(免费,支持周期 7 个月),EE 即企业版,强调安全,付费使用,支持周期 24 个月。 Docker CE 分为 stable test 和 nightly 三个更新频道…

CTFhub-RCE-过滤cat

查看当前目录:输入:127.0.0.1|ls 127.0.0.1|cat flag_42211411527984.php 无输出内容 使用单引号绕过 127.0.0.1|cat flag_42211411527984.php|base 64 使用双引号绕过 127.0.0.1|c""at flag_42211411527984.php|base64 使用特殊变量绕过 127.0.0.…

第四篇 《随机点名答题系统》——基础设置详解(类抽奖系统、在线答题系统、线上答题系统、在线点名系统、线上点名系统、在线考试系统、线上考试系统)

目录 1.功能需求 2.数据库设计 3.流程设计 4.关键代码 4.1.设置题库 4.1.1数据请求示意图 4.1.2选择题库(index.php)数据请求代码 4.1.3取消题库(index.php)数据请求代码 4.1.4业务处理Service(xztk.p…

计算机的发展

硬件的发展 第一台电子数字计算机:ENIAC(1946),作者:冯诺依曼,逻辑元件:电子管 bug:小虫子,会影响打点 Intel: 机器字长:计算机一次整数运算所能…

企业计算机服务器中了mallox勒索病毒怎么解决,勒索病毒解密文件恢复

随着科技技术的不断发展,网络技术得到了快速提升,但网络安全威胁也不断增加,近期,云天数据恢复中心陆续接到很多企业的求助信息,企业的计算机服务器遭到了mallox勒索病毒攻击,导致企业的所有业务中断&#…

[nlp] 损失缩放(Loss Scaling)loss sacle

在深度学习中,由于浮点数的精度限制,当模型参数非常大时,会出现数值溢出的问题,这可能会导致模型训练不稳定。为了解决这个问题,损失缩放(Loss Scaling)技术被引入,它通过缩放损失值来解决这个问题。 在深度学习中,损失缩放技术通常是通过将梯度进行缩放来实现的。具…

鸿蒙APP外包开发上线流程

鸿蒙系统的上线流程可能会根据具体的版本和平台要求而略有不同。在进行上线之前,开发人员应该详细了解并遵循鸿蒙生态系统的相关规定和要求。鸿蒙(HarmonyOS)应用的上线流程通常包括以下步骤,希望对大家有所帮助。北京木奇移动技术…

【深度学习】pytorch快速得到mobilenet_v2 pth 和onnx

在linux执行这个程序: import torch import torch.onnx from torchvision import transforms, models from PIL import Image import os# Load MobileNetV2 model model models.mobilenet_v2(pretrainedTrue) model.eval()# Download an example image from the P…

安卓中轻量级数据存储方案分析探讨

轻量级数据存储功能通常用于保存应用的一些常用配置信息,并不适合需要存储大量数据和频繁改变数据的场景。应用的数据保存在文件中,这些文件可以持久化地存储在设备上。需要注意的是,应用访问的实例包含文件所有数据,这些数据会一…

Qt6版使用Qt5中的类遇到的问题解决方案

如果有需要请关注下面微信公众号,会有更多收获! 1.QLinkedList 是 Qt 中的一个双向链表类。它提供了高效的插入和删除操作,尤其是在中间插入和删除元素时,比 QVector 更加优秀。下面是使用 QLinkedList 的一些基本方法&#xff1a…

微服务学习 | Eureka注册中心

微服务远程调用 在order-service的OrderApplication中注册RestTemplate 在查询订单信息时,需要同时返回订单用户的信息,但是由于微服务的关系,用户信息需要在用户的微服务中去查询,故需要用到上面的RestTemplate来让订单的这个微…

JVM虚拟机:通过日志学习PS+PO垃圾回收器

我们刚才设置参数的时候看到了-XXPrintGCDetails表示输出详细的GC处理日志,那么我们如何理解这个日志呢?日志是有规则的,我们需要按照这个规则来理解日志中的内容,它有两个格式,一个格式是GC的格式(新生代&…

YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.79】改进损失函数为VariFocal Loss

前言 作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍&…

Egress-TLS-Origination

目录 文章目录 目录本节实战1、出口网关TLS发起2、通过 egress 网关发起双向 TLS 连接关于我最后 本节实战 实战名称🚩 实战:Egress TLS Origination-2023.11.19(failed)🚩 实战:通过 egress 网关发起双向 TLS 连接-2023.11.19(测…

CDN是什么,能起到什么作用

随着互联网的快速发展,用户对于快速、稳定、高效的互联网体验的需求日益增长。为了满足这一需求,内容分发网络(CDN)应运而生,并在近年来得到了广泛应用。CDN通过在全球范围内部署大量的服务器和网络节点,实…

excel怎么能锁住行 和/或 列的自增长,保证粘贴公式的时候不自增长或者只有部分自增长

例如在C4单元格中输入了公式: 现在如果把C4拷贝到C5,D3会自增长为D4: 现在如果想拷贝的时候不自增长,可以先把光标放到C4单元格,然后按F4键,行和列的前面加上了$符号,锁定了: …

QEMU显示虚拟化的几种选项

QEMU可以通过通过命令行"-vga type"选择为客户机模拟的VGA卡的类别,可选择的类型有多个: -vga typeSelect type of VGA card to emulate. Valid values for type arecirrusCirrus Logic GD5446 Video card. All Windows versions starting from Windows 95 should …

深度学习YOLO图像视频足球和人体检测 - python opencv 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov5算法5 数据集6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习YOLO图像视频足球和人体检测 该项目较为新颖,适合作为竞赛课题方向,学长非…

Vatee万腾未来科技之航:Vatee创新引领的新纪元

在当今数字化时代,Vatee万腾科技正在开创一段引领未来的全新征程。以其卓越的创新能力和领导地位,Vatee万腾成为数字化领域的引领者。其未来科技之航展现了一种独特的数字化愿景,引领着科技创新进入新的纪元。 Vatee万腾在数字科技领域展现出…