第14届蓝桥杯青少组python试题解析:23年5月省赛

选择题

T1. 执行以下代码,输出结果是()。

lst = "abc"
print(lst+lst)
  • abcabc
  • abc
  • lst+lst
  • abc+abc

T2. 执行以下代码,输出的结果是()。

age = {16,18,17}
print(type(sorted(age)))
  • <class 'set'>
  • <class 'int'>
  • <class 'str'>
  • <class 'list'>

sorted(iterable, cmp=None, key=None, reverse=False) 将返回一个新的 list,不会改变原来的可迭代对象。

T3. 导入random标准库,执行print(random.randrange(2,20,2))语句,可能输出的结果是()。

  • 2
  • 5
  • 13
  • 20

random.randrange ([start,] stop [,step])

  • 必须参数stop表示随机生成的范围上限(不包括上限
  • start表示随机生成的范围下限(包括下限
  • step表示随机生成数之间的间隔,默认是1。

T4. 下列选项哪一个是转为整数的函数()?

  • str()
  • int()
  • float
  • list()

T5. 以下关于Python中复数描述,错误的是()。

  • 复数可以看作二元有序浮点数(x,y)
  • 实部和虚部都是浮点数
  • 虚数部分的后缀可以是"j",也可以是"J"
  • 已知复数a,可以使用real获得虚数部分。

在Python中,复数类型用complex表示。它可以通过以下方式创建:

  • 直接指定实部和虚部:complex(real, imag),real是实数部分,imag是虚数部分。
  • 使用字符串:complex(string)

例如:

a = complex(3, 4) # 创建一个复数3+4j
a = complex('3+4j') # 创建一个复数3+4j

编程题

T1. N + N

问题描述

给定一个正整数 N N N,计算出 N + N N+N N+N的值。
例如: N = 4 N = 4 N=4 4 + 4 4+4 4+4的值为 8 8 8

输入描述

输入一个正整数 N N N

输出描述

输出 N + N N+N N+N的值

样例输入

4

样例输出

8

代码实现

n = int(input())
print(n + n)

T2. 字符

问题描述

给定一个只包含小写字母的字符串 S S S S S S长度 ≥ 3 ≥3 3),请输出字符串 S S S的第一个字符和最后一个字符。例如:
S ="abc" a b c abc abc的第一个字符为 a a a,最后一个字符为 c c c,故输出 a c ac ac

输入描述

输入一个只包含小写字母的字符串 S S S S S S长度 ≥ 3 ≥3 3)。

输出描述

输出字符串 S S S的第一个字符和最后一个字符,两个字符之间没有空格及其他字符

样例输入

abc

样例输出

ac

代码实现

s = input()
print(s[0] + s[-1])

T3. 数字币

问题描述

提示信息:合数指自然数中除了能被1和本身整除外,还能被其它正整数整除的数。例如 4 4 4 4 4 4除了能被 1 1 1 4 4 4整除,还可以被 2 2 2整除。

小明收藏了 N N N 2 ≤ N ≤ 25 2≤N≤25 2N25)个数字币,每个数字币上都有一个面值(面值可以重复)。从数字币中任选 K K K 2 ≤ K ≤ N 2≤K≤N 2KN)个,有多种选法,请将每次选择的数字币上的面值累加,然后解决以下两个问题:

  • 问题1:累加的和中有多少种不同的结果
  • 问题2:累加的和中有多少个不同的合数

例如: N = 5 N=5 N=5 K = 3 K=3 K=3 5 5 5个数字币上的面值分别为 2 、 1 、 4 、 5 、 3 2、1、4、5、3 21453,任选 3 3 3个数字币,有 10 10 10种选法,将每种选法上的面值累加: 2 + 1 + 4 = 7 、 2 + 1 + 5 = 8 、 2 + 1 + 3 = 6 、 2 + 4 + 5 = 11 、 2 + 4 + 3 = 9 、 2 + 5 + 3 = 10 、 1 + 4 + 5 = 10 、 1 + 4 + 3 = 8 、 1 + 5 + 3 = 9 、 4 + 5 + 3 = 12 2+1+4=7、2+1+5=8、2+1+3=6、2+4+5=11、2+4+3=9、2+5+3=10、1+4+5=10、1+4+3=8、1+5+3=9、4+5+3=12 2+1+4=72+1+5=82+1+3=62+4+5=112+4+3=92+5+3=101+4+5=101+4+3=81+5+3=94+5+3=12

其中累加的和中有 7 7 7种不同的结果,分别是 7 、 8 、 6 、 11 、 9 、 10 、 12 7、8、6、11、9、10、12 7861191012;累加的和中有 5 5 5个不同的合数,分别是 8 、 6 、 9 、 10 、 12 8、6、9、10、12 8691012

输入描述

第一行输入一个正整数 N N N 2 ≤ N ≤ 25 2≤N≤25 2N25),表示数字币的个数。
第二行输入 N N N个正整数( 1 ≤ 1≤ 1正整数 ≤ 1000 ≤1000 1000),表示数字币上的面值,正整数之间以一个英文逗号隔开。
第三行输入一个正整数 K K K 2 ≤ K ≤ N 2≤K≤N 2KN),表示所要选取的数字币个数。

输出描述

输出两个整数,分别表示累加的和中不同结果的个数以及累加的结果中不同合数的个数,两个整数之间以一个英文逗号隔开。

样例输入

5
2,1,4,5,3
3

样例输出

7,5

代码实现

n = int(input())
a = eval(input())
k = int(input())
d = {}
ans1, ans2 = 0, 0
b = [0] * n
# 检查x是否为合数
def check(x):i = 2while i * i <= x:if x % i == 0:return Truei += 1return False
def dfs(t, last, s):if t == k:global ans1, ans2# 如果字典中不存在sif s not in d:d[s] = 1ans1 += 1# 检查是否为合数if check(s):ans2 += 1return;for i in range(last + 1, n):dfs(t + 1, i, s + a[i])
dfs(0, -1, 0)
print('%d,%d' % (ans1, ans2))

T4. 杨辉三角

问题描述

提示信息:杨辉三角就是一个用数排列起来的三角形(如下图),杨辉三角规则如下:

  1. 每行第一个数和最后一个数都为 1 1 1,其它每个数等于它左上方和右上方的两数之和;
  2. n n n行有 n n n个数。
    在这里插入图片描述

注意:“列”指的是如图所标注的斜列。

小青对杨辉三角的特点和规律研究得很明白,现要考察你对杨辉三角的熟悉程度,首先告知你这是一个 N N N行的杨辉三角,然后又告知了两个数值 X X X Y Y Y X X X表示第几行, Y Y Y表示第几列),让你根据杨辉三角的特点和观察到的规律解决以下两个问题。

  • X X X行第 Y Y Y列对应的数是多少;
  • 求出 N N N行的杨辉三角中第 Y Y Y列中所有数的和。

例如: N = 5 N=5 N=5 5 5 5行的杨辉三角如下图。
在这里插入图片描述

X = 5 X=5 X=5 Y = 3 Y=3 Y=3,第 5 5 5行第 3 3 3列对应的数为 6 6 6;第 3 3 3列中所有数的和为 10 10 10 10 = 6 + 3 + 1 10 = 6 + 3 + 1 10=6+3+1)。

输入描述

第一行输入一个正整数 N N N 2 ≤ N ≤ 30 2≤N≤30 2N30),表示杨辉三角的行数
第二行输入两个正整数 X X X Y Y Y 1 ≤ Y ≤ X ≤ N 1≤Y≤X≤N 1YXN),分别表示第 X X X行和第 Y Y Y列,正整数之间以一个英文逗号隔开。

输出描述

输出两个整数,分别表示 N N N行的杨辉三角中第 X X X Y Y Y列对应的数,及第 Y Y Y列上所有数的和,两个整数之间以一个英文逗号隔开。

样例输入

5
5,3

样例输出

6,10

代码实现

n = int(input())
x, y = eval(input())
# 初始化二维列表
f = [[0] * (n + 1) for _ in range(n + 1)]
# 计算杨辉三角,行列的下标从1开始
for i in range(1, n + 1):for j in range(1, i + 1):if i == 1 or j == i:f[i][j] = 1else:f[i][j] = f[i - 1][j] + f[i - 1][j - 1]
ans1 = f[x][y]
ans2 = 0
for i in range(1, n + 1):ans2 += f[i][y];
print('%d,%d' % (ans1, ans2))

T5. 涂鸦

问题描述

工人砌了一面奇特的砖墙,该墙由 N N N列砖组成( 1 ≤ N ≤ 1 0 6 1≤N≤10^6 1N106),且每列砖的数量为 K i K_i Ki 1 ≤ K i ≤ 1 0 4 1≤K_i≤10^4 1Ki104,相邻两列砖之间无缝隙),每块砖的长宽高都为 1 1 1

小蓝为了美化这面墙,需要在这面墙中找到一块面积最大的矩形用于涂鸦,那么请你帮助小蓝找出最大矩形,并输出其面积。

例如: N = 6 N = 6 N=6,表示这面墙有 6 6 6列,每列砖的数量依次为 3 、 2 、 1 、 5 、 6 、 2 3、2、1、5、6、2 321562,如下图:
在这里插入图片描述
图中虚线部分是一块面积最大的矩形,其面积为 10 10 10

输入描述

第一行输入一个正整数 N N N 1 ≤ N ≤ 1 0 6 1≤N≤10^6 1N106),表示这面砖墙由几列砖组成

第二行输入 N N N个正整数 K i K_i Ki 1 ≤ K i ≤ 1 0 4 1≤K_i≤10^4 1Ki104),表示每列砖的数量,正整数之间以一个空格隔开。

输出描述

输出一个正整数,表示最大矩形的面积。

样例输入

6
3 2 1 5 6 2

样例输出

10

算法思想1(60分,暴力枚举)

矩形的面积等于列数 × \times ×相邻列的高度最小值。因此可以暴力枚举所有相邻列的组合,计算其面积,然后打擂台求最大值即可。

时间复杂度

尝试所有相邻列的组合需要分别枚举开始列和结束列,时间复杂度为 O ( n 2 ) O(n^2) O(n2)

代码实现
n = int(input())
a = list(map(int, input().split()))
ans = 0
# 枚举矩形的开始列
for i in range(n):# 枚举矩形的结束列for j in range(i, n):# 从i到j一共有j - i + 1列,这些列中高度的最小值为min(a[i : j + 1]ans = max(ans, (j - i + 1) * min(a[i : j + 1]))
print(ans)

算法思想2(100分,枚举 + 单调栈)

矩形的面积等于每列砖的数量 × \times × 与它左右相邻的且具有相同高度的列数。因此可以枚举每列砖的数量,第 i i i列来说,不妨设其砖的数量为 a i a_i ai

  • 向左找到第一个小于 a i a_i ai的位置 L i L_i Li
  • 向右找到第一个小于 a i a_i ai的位置 R i R_i Ri

此时以第 i i i列砖为高度的矩形的面积 = ( R i − L i − 1 ) × a i =(R_i - L_i-1)\times a_i =(RiLi1)×ai,那么只需要打擂台求最大值即可。

那么如何向左(向右)找到第一个小于 a i a_i ai的位置呢,可以使用单调栈的思想,以 O ( 1 ) O(1) O(1)的时间复杂度实现。

时间复杂度
  • 枚举每列砖的时间复杂度为 O ( n ) O(n) O(n)
  • 单调栈向左(向右)找到第一个小于 a i a_i ai的位置的时间复杂度为 O ( 1 ) O(1) O(1)

总的时间复杂度为 O ( n ) O(n) O(n)

代码实现
n = int(input())
a = list(map(int, input().split()))
L = [0] * n
R = [0] * n
# 单调栈查找左侧第一个小于a[i]的位置L[i]
stk = []
for i in range(n):while len(stk) != 0 and a[stk[-1]] >= a[i]:stk.pop()if len(stk) == 0: # 左侧没有比a[i]小的数L[i] = -1else:L[i] = stk[-1] # 栈顶就是左侧第一个比a[i]小的位置stk.append(i)
# 单调栈查找右侧第一个小于a[i]的位置R[i]
stk = []
for i in range(n - 1, -1, -1):while len(stk) != 0 and a[stk[-1]] >= a[i]:stk.pop()if len(stk) == 0: #右侧没有比a[i]小的数R[i] = nelse:R[i] = stk[-1] # 栈顶就是右侧第一个比a[i]小的位置stk.append(i)
ans = 0
for i in range(n):# (L, R)之间一共有R - L - 1列ans = max(ans, a[i] * (R[i] - L[i] - 1)) 
print(ans)

T6. 传送门(仅中、高级组)

问题描述

在一个神奇空间里有 N N N个房间,房间从 1 1 1 N N N编号,每个房间可能有一个或多个传送门,每个传送门都有一个编号,如果相同编号的传送门同时出现在多个房间中,表示这些房间可以互通。
给定两个房间的编号 A A A B B B,请找出从房间 A A A到达房间 B B B最少需要经过几个传送门。
例如: N = 3 N=3 N=3 3 3 3个房间中传送门的编号分别为:
房间 1 1 1 1 , 4 , 6 1,4,6 1,4,6
房间 2 2 2 2 , 3 , 4 , 8 2,3,4,8 2,3,4,8
房间 3 3 3 3 , 6 , 9 3,6,9 3,6,9
其中房间 1 1 1和房间 2 2 2互通,共用 4 4 4号传送门;房间 1 1 1和房间 3 3 3互通,共用 6 6 6号传送门;房间 2 2 2和房间 3 3 3互通,共用 3 3 3号传送门;当 A = 1 A=1 A=1 B = 2 B=2 B=2,从房间 1 1 1到达房间 2 2 2,共有两种路线:

  • 路线 1 1 1:从房间 1 1 1通过 4 4 4号传送门进入房间 2 2 2,共经过 1 1 1个传送门。如下图橙色路线所示。
  • 路线 2 2 2:从房间 1 1 1通过 6 6 6号传送门进入房间 3 3 3,再从房间 3 3 3通过 3 3 3号传送门进入房间 2 2 2,共经过 2 2 2个传送门;故从房间 1 1 1到达房间 2 2 2最少需要经过 1 1 1个传送门。如下图黑色路线所示。

在这里插入图片描述

输入描述

第一行输入一个正整数 N N N 2 ≤ N ≤ 20 2≤N≤20 2N20),表示房间数量。
接下来输入 N N N行,每行包含多个正整数( 1 ≤ 1≤ 1正整数 ≤ 100 ≤100 100),第 2 2 2行到第 N + 1 N+1 N+1行依次表示 1 1 1 N N N号房间内所有传送门的编号,正整数之间以一个英文逗号隔开。
最后一行输入两个正整数 A A A B B B 1 ≤ A ≤ N , 1 ≤ B ≤ N 1≤A≤N,1≤B≤N 1AN1BN,且 A ≠ B A≠B A=B),表示两个房间的编号,正整数之间以一个英文逗号隔开。

输出描述

输出一个整数,表示从房间 A A A到达房间 B B B最少需要经过几个传送门,如果房间 A A A不能到达房间 B B B,则输出 − 1 -1 1

样例输入

3
1,4,6
2,3,4,8
3,6,9
1,2

样例输出

1

算法思想

  • 首先,输入每个房间的传送门编号,可以计算出任意两个房间是否有传送门相连
  • 然后,可以通过BFS求到起点 A A A的最短路径。

代码实现

n = int(input())
a = []
for i in range(n):b = eval(input())a.append(b)
A, B = eval(input())# g数组存储两个房间是否有传送门
g = [[0] * n for _ in range(n)]for i in range(n):for j in range(i + 1, n):for x in a[i]:if x in a[j]:# 第i个房间和第j个房间有传送门g[i][j] = g[j][i] = 1break
# bfs求最短路
ans = 0
st = [0] * n
q = [] # 队列
q.append((A, 0)) # 将起点和到起点的距离入队
st[A] = 1 # 将起点标记为已访问
# 只要队列不空,bfs计算到起点的最短路径
while len(q) != 0:x, d = q.pop(0)if(x == B): # 如果到达终点ans = dbreakfor i in range(n):# 如果i点已访问,或者x到i之间没有传送门if st[i] == 1 or g[x][i] == 0:continueq.append((i, d + 1))
print(ans)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/198357.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode 推送本地新项目到gitee

一、gitee新建仓库 1、填好相关信息后点击创建 2、创建完成后复制 https&#xff0c;稍后要将本地项目与此关联 3、选择添加远程存储库 4、输入仓库地址&#xff0c;选择从URL添加远程存储仓库 5、输入仓库名称&#xff0c;确保仓库名一致

【SQL server】数据库、数据表的创建

创建数据库 --如果存在就删除 --所有的数据库都存在sys.databases当中 if exists(select * from sys.databases where name DBTEST)drop database DBTEST--创建数据库 else create database DBTEST on --数据文件 (nameDBTEST,--逻辑名称 字符串用单引号filenameD:\DATA\DBT…

esp-01刷固件/下载软件到内部单片机的方法

此文章为转载&#xff0c;非原创 一、准备 需要准备三个东西&#xff1a; 1.esp模块。ESP-01 和 ESP-01s 的引脚及 flash 容量基本完全兼容&#xff0c;只是内部硬件设计粗糙与否的区别&#xff0c;所以理论上都适用。 2.官方固件。此部分可以从安信可官方教程中下载&#xff0…

计算机网络——物理层-信道的极限容量(奈奎斯特公式、香农公式)

目录 介绍 奈氏准则 香农公式 介绍 信号在传输过程中&#xff0c;会受到各种因素的影响。 如图所示&#xff0c;这是一个数字信号。 当它通过实际的信道后&#xff0c;波形会产生失真&#xff1b;当失真不严重时&#xff0c;在输出端还可根据已失真的波形还原出发送的码元…

深度学习之基于YoloV5血红细胞检测识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 深度学习已经在许多领域中得到了广泛的应用&#xff0c;包括医疗健康领域。其中&#xff0c;YOLO&#xff08;You O…

SpringMVC 进阶

SpringMVC 进阶 一、拦截器 SpringMVC 中 Interceptor 拦截器的主要作⽤是拦截⽤⼾的请求并进⾏相应的处理。⽐如通过它来进⾏权限验证&#xff0c;或者是来判断⽤⼾是否登陆等操作。对于 SpringMVC 拦截器的定义⽅式有两种&#xff1a; 实现接⼝&#xff1a;org.springfram…

【Linux网络】从原理到实操,感受PXE无人值守自动化高效批量网络安装系统

一、PXE网络批量装机的介绍 1、常见的三种系统安装方式 2、回顾系统安装的过程&#xff0c;了解系统安装的必要条件 3、什么是pxe 4、搭建pxe的原理 5、Linux的光盘镜像中的isolinux中的相关文件学习 二、关于实现PXE无人值守装机的四大文件与五个软件的对应关系详解 5个…

超详细~25考研规划~感恩现在努力的你!!!

25考研规划 俄语&#xff0c;翻译过来叫我爱你 考试时间 第一天 8.30-11.30政治——100分 2.00-5.00英语——100分 第二天 8.30-11.30数学——150分 2.00-5.00专业课——150分 1.什么是25考研 将在2024年12月参加考研&#xff0c;2025年本科毕业&#xff0c;9月读研究…

探索Scrapy中间件:自定义Selenium中间件实例解析

简介 Scrapy是一个强大的Python爬虫框架&#xff0c;可用于从网站上抓取数据。本教程将指导你创建自己的Scrapy爬虫。其中&#xff0c;中间件是其重要特性之一&#xff0c;允许开发者在爬取过程中拦截和处理请求与响应&#xff0c;实现个性化的爬虫行为。 本篇博客将深入探讨…

SpringCloud 微服务全栈体系(十四)

第十一章 分布式搜索引擎 elasticsearch 四、RestAPI ES 官方提供了各种不同语言的客户端&#xff0c;用来操作 ES。这些客户端的本质就是组装 DSL 语句&#xff0c;通过 http 请求发送给 ES。官方文档地址&#xff1a;https://www.elastic.co/guide/en/elasticsearch/client/…

Python 自动化(十八)admin后台管理

admin后台管理 什么是admin后台管理 django提供了比较完善的后台数据库的接口&#xff0c;可供开发过程中调用和测试使用 django会搜集所有已注册的模型类&#xff0c;为这些模型类提供数据管理界面&#xff0c;供开发使用 admin配置步骤 创建后台管理账号 该账号为管理后…

程序员带你入门人工智能

随着人工智能技术的飞速发展&#xff0c;越来越多的程序员开始关注并学习人工智能。作为程序员&#xff0c;我们可能会对如何开始了解人工智能感到困惑。今天&#xff0c;我将向大家介绍一些如何通过自学了解人工智能的经验和方法&#xff0c;帮助大家更好地入门这个充满挑战和…

李沐的学习Pytorch环境配置

https://github.com/Miraclelucy/dive_into_deep_learning/tree/main 上面是别人的笔记 可以学一下。 如果没有梯子&#xff0c;按照清华源配置 清华源conda配置 最好下载 1.11版本torch那一套 然后装d2l版本可以装 pip install d2l0.17.6然后可以用 http://localhost:8889/…

学习笔记6——垃圾回收

学习笔记系列开头惯例发布一些寻亲消息 链接&#xff1a;https://baobeihuijia.com/bbhj/contents/3/190801.html java垃圾回收&#xff08;stop the world&#xff09; 专注于堆和方法区的垃圾回收&#xff0c;年轻代&#xff0c;老年代&#xff0c;永久代判断对象是否还存…

Linux shell编程学习笔记26:stty(set tty)

之前我们探讨了Linux中的tty&#xff0c;tty命令的主要功能是显示当前使用的终端名称。 如果我们想进一步对tty进行设置&#xff0c;就要用到stty。 stty的功能&#xff1a;显示和修改终端特性&#xff08;Print or change terminal characteristics&#xff09;。 1 stty -…

关于新能源汽车的英语翻译

近年来&#xff0c;随着全球对环保和可持续发展的重视&#xff0c;新能源汽车已经成为汽车产业的重要发展方向。各国政府和企业都在加大投入&#xff0c;推动新能源汽车的技术研发和产业化发展&#xff0c;进而促进了新能源汽车翻译的需求不断提升 。那么&#xff0c;关于新能源…

智慧城市安全监控的新利器

在传统的城市管理中&#xff0c;井盖的监控一直是一个难题&#xff0c;而井盖异动传感器的出现为这一问题提供了有效的解决方案。它具有体积小、重量轻、安装方便等特点&#xff0c;可以灵活地应用于各种类型的井盖&#xff0c;实现对城市基础设施的全方位监控。 智能井盖监测终…

Android图片涂鸦,Kotlin(1)

Android图片涂鸦&#xff0c;Kotlin&#xff08;1&#xff09; import android.content.Context import android.graphics.Canvas import android.graphics.Color import android.graphics.Paint import android.graphics.Path import android.graphics.PointF import android.…

RobotFramework之用例执行时添加命令行参数(十三)

学习目录 引言 标签tag 设置变量 随机执行顺序 设置监听器 输出日志目录和文件 引言 Robot Framework 提供了许多命令行选项&#xff0c;可用于控制测试用例的执行方式以及生成的输出。本节介绍一些常用的选项语法。 标签tag 之前文章我们介绍过&#xff0c;在测试套件…

Appium自动化测试:通过appium的inspector功能无法启动app的原因

在打开appium-desktop程序&#xff0c;点击inspector功能&#xff0c;填写app的配置信息&#xff0c;启动服务提示如下&#xff1a; 报错信息&#xff1a; An unknown server-side error occurred while processing the command. Original error: Cannot start the cc.knowyo…