(八)、基于 LangChain 实现大模型应用程序开发 | 基于知识库的个性化问答 (检索 Retrieval)

检索增强生成(RAG)的整体工作流程如下:

在这里插入图片描述
在构建检索增强生成 (RAG) 系统时,信息检索是核心环节。检索是指根据用户的问题去向量数据库中搜索与问题相关的文档内容,当我们访问和查询向量数据库时可能会运用到如下几种技术:

  • 1、基本语义相似度(Basic semantic similarity)
  • 2、最大边际相关性(Maximum marginal relevance,MMR)
  • 2、过滤元数据
  • 3、LLM辅助检索

使用基本的相似性搜索大概能解决你80%的相关检索工作,但对于那些相似性搜索失败的边缘情况该如何解决呢?如检索出重复的内容,或检索出相似但没有按我们要求的检索范围进行检索的内容(叫它检索第一章它却检索出了第二章)

这一章节我们将介绍几种检索方法,以及解决检索边缘情况的技巧,让我们一起开始学习吧!

0、初始化openai环境

from langchain.chat_models import ChatOpenAI
import os
import openai
# 运行此API配置,需要将目录中的.env中api_key替换为自己的
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
openai.api_key = os.environ['OPENAI_API_KEY']

1、向量数据库检索

1.1、相似性检索(Similarity Search)

# 安装个依赖包先
!pip install -Uq lark

下面我们来实现一下语义的相似度搜索,我们把三句话存入向量数据库Chroma中,然后我们提出问题让向量数据库根据问题来搜索相关答案:

from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddingsembedding = OpenAIEmbeddings()texts_chinese = ["""华为手机遥遥领先,太牛了。""","""奶牛猫真的非常可爱,但有点调皮,古灵精怪。""","""黯然叉烧饭,半肥半瘦,入口多汁细腻,配上一口白饭,一点都不腻。""","""奶牛猫非常cute,但有的贱"""
]smalldb_chinese = Chroma.from_texts(texts_chinese, embedding=embedding)

我们可以看到前两句都是描述的是一种叫“鹅膏菌”的菌类,包括它们的特征:有较大的子实体,第三句描述的是“”,一种已知的最毒的蘑菇,它的特征就是:含有剧毒。对于这个例子,我们将创建一个小数据库,我们可以作为一个示例来使用。
下面我们提出相关问题,检索出相关的答案,看是否正确:

query = '告诉我关于奶牛猫的所有信息'
smalldb_chinese.similarity_search(query, k=2)
[Document(page_content='奶牛猫真的非常可爱,但有点调皮,古灵精怪。'),Document(page_content='奶牛猫非常cute,但有的贱')]

chroma 的 similarity_search(相似性搜索) 方法可以根据问题的语义去数据库中搜索与之相关性最高的文档,也就是搜索到了第一句和第二句的文本。但这似乎还存在一些问题,因为第一句和第二句的含义非常接近,他们都是描述奶牛猫的,所以假如只返回其中的一句就足以满足要求了,如果返回两句含义非常接近的文本感觉是一种资源的浪费。下面我们来看一下 max_marginal_relevance_search 的搜索结果。

1.2、解决多样性:最大边际相关性(MMR,max_marginal_relevance_search)

最大边际相关模型 (MMR,Maximal Marginal Relevance) 是实现多样性检索的常用算法。

MMR 的基本思想是同时考量查询与文档的相关度,以及文档之间的相似度相关度确保返回结果对查询高度相关,相似度则鼓励不同语义的文档被包含进结果集。具体来说,它计算每个候选文档与查询的相关度,并减去与已经选入结果集的文档的最大相似度。这样更不相似的文档会有更高的得分。

在这里插入图片描述

总之,MMR 是解决检索冗余问题、提供多样性结果的一种简单高效的算法。它平衡了相关性和多样性,适用于对多样信息需求较强的应用场景。

Langchain的内置方法max_marginal_relevance_search已经帮我们首先了该算法,在执行max_marginal_relevance_search方法时,我们需要设置fetch_k参数,用来告诉向量数据库我们最终需要k个结果,向量数据库在搜索时会获取一个和问题相关的文档集,该文档集中的文档数量大于k,然后从中过滤出k个具有相关性同时兼顾多样性的文档。

我们来看一个利用 MMR 从知识库中检索信息的示例。设置 fetch_k 参数,用来告诉向量数据库我们最终需要 k 个结果返回。fetch_k=3 ,也就是我们最初获取 3 个文档,k=2 表示返回最不同的 2 个文档。

smalldb_chinese.max_marginal_relevance_search(query, fetch_k=3, k=2)
[Document(page_content='奶牛猫真的非常可爱,但有点调皮,古灵精怪。'),Document(page_content='黯然叉烧饭,半肥半瘦,入口多汁细腻,配上一口白饭,一点都不腻。')]

可以看到MMR过滤掉了重复度比较高的 奶牛猫非常cute,但有的贱,尽管第三句与我们的问题的相关性不太高,但是这样的结果其实应该是更加的合理,因为第一句和第二句文本本来就有着相似的含义,所以只需要返回其中的一句就可以了,另外再返回一个与问题相关性弱一点的答案(第三句文本),这样似乎增强了答案的多样性,相信用户也会更加偏爱。

下面我们加载上一篇博客中生成的吴恩达机器学习的相关知识的向量数据库:

from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddingspersist_directory_chinese = './data/chroma/'embedding = OpenAIEmbeddings()vectordb_chinese = Chroma(persist_directory=persist_directory_chinese,embedding_function=embedding
)print(vectordb_chinese._collection.count())# 首先我们定义一个需要检索答案的问题:
query = "MachineLearning-Lecture02讲了什么内容?" # 接着调用已加载的向量数据库根据相似性检索答案topk:  
docs_chinese = vectordb_chinese.similarity_search(query, k=3)
print(len(docs_chinese))
docs_chinese
80
3
[Document(page_content='MachineLearning-Lecture01  \nInstructor (Andrew Ng):  Okay...', metadata={'page': 0, 'source': './data/MachineLearning-Lecture01.pdf'}),
Document(page_content='MachineLearning-Lecture01  \nInstructor (Andrew Ng):  Okay...', metadata={'page': 0, 'source': './data/MachineLearning-Lecture02.pdf'}),
Document(page_content="joys of machine learning firs thand and really try to...', metadata={'page': 10, 'source': './data/MachineLearning-Lecture02.pdf'})]

我们可以看到,docs_chinese[0]和docs_chinese[1]是一样的,但属于不同文档,MachineLearning-Lecture01.pdf 和 MachineLearning-Lecture02.pdf
下面用mmr试试,可以发现结果不一样;mmr它把搜索结果中相似度很高的文档做了过滤,所以它保留了结果的相关性又同时兼顾了结果的多样性。

docs_mmr_chinese = vectordb_chinese.max_marginal_relevance_search(query,k=3)
docs_mmr_chinese
[Document(page_content='MachineLearning-Lecture01  \nInstructor (Andrew Ng):  Okay...', metadata={'page': 0, 'source': './data/MachineLearning-Lecture01.pdf'}),
Document(page_content="although they'll also be recorded and televi sed. And we'll us...', metadata={'page': 8, 'source': './data/MachineLearning-Lecture01.pdf'}),
Document(page_content="So, for example, what a learning algorithm ma y do is...', metadata={'page': 13, 'source': './data/MachineLearning-Lecture01.pdf'})]

1.3、解决特殊性:使用元数据

在失败的场景中,除了上面的重复性问题,还有就是是询问了关于文档中某一讲的问题,但得到的结果中也包括了来自其他讲的结果。这是我们所不希望看到的结果,之所以产生这样的结果是因为当我们向向量数据库提出问题时,数据库并没有很好的理解问题的语义,所以返回的结果不如预期。要解决这个问题,我们可以通过过滤元数据的方式来实现精准搜索,当前很多向量数据库都支持对元数据(metadata)的操作。

  • metadata 为每个嵌入的块(embedded chunk)提供上下文。

从前面的学习我们可以知道,每个 docunmentpage_content 和metadata组成,如
Document(page_content=‘xxx’, metadata={‘page’: 0, ‘source’: ‘./data/MachineLearning-Lecture01.pdf’})

所以,我们可以在检索时,手动指定一个元数据过滤器filter,让生成的结果限定在filter指定的文档来源:

# 首先我们定义一个需要检索答案的问题:
query = "MachineLearning-Lecture02讲了什么内容?" # 接着调用已加载的向量数据库根据相似性检索答案topk:  
docs_chinese = vectordb_chinese.similarity_search(query, k=3,filter={"source":'./data/MachineLearning-Lecture01.pdf'})
print(len(docs_chinese))
docs_chinese
3
[Document(page_content='MachineLearning-Lecture01  \nInstructor (Andrew Ng):  Okay...', metadata={'page': 0, 'source': './data/MachineLearning-Lecture01.pdf'}),
Document(page_content="joys of machine learning firs thand and really try to...', metadata={'page': 10, 'source': './data/MachineLearning-Lecture01.pdf'}),
Document(page_content="although they'll also be recorded and televi sed. And we'll us...', metadata={'page': 8, 'source': './data/MachineLearning-Lecture01.pdf'})]

1.4、解决特殊性:在元数据中使用自查询检索器 SelfQueryRetriever(LLM辅助检索)

当然,我们不能每次都采用手动的方式来解决这个问题,这会显得不够智能。这里我们将通过LLM来自动从用户问题中提取过滤信息。

LangChain提供了SelfQueryRetriever模块,它可以通过语言模型从问题语句中分析出:

  • 1、向量搜索的查询字符串(search term)

  • 2、过滤文档的元数据条件(Filter)

以“除了维基百科,还有哪些健康网站”为例,SelfQueryRetriever可以推断出“除了维基百科”表示需要过滤的条件,即排除维基百科的文档。

它使用语言模型自动解析语句语义,提取过滤信息,无需手动设置。这种基于理解的元数据过滤更加智能方便,可以自动处理更复杂的过滤逻辑。

掌握利用语言模型实现自动化过滤的技巧,可以大幅降低构建针对性问答系统的难度。这种自抽取查询的方法使检索更加智能和动态。

其原理如下图所示:

在这里插入图片描述

下面我们就来实现一下LLM辅助检索:
这里我们首先定义了 metadata_field_info_chinese ,它包含了元数据的过滤条件 source 和 page , 其中 source 的作用是告诉 LLM 我们想要的数据来自于哪里, page 告诉 LLM 我们需要提取相关的内容在原始文档的哪一页。有了 metadata_field_info_chinese 信息后,LLM会自动从用户的问题中提取出上图中的 Filter 和 Search term 两项,然后向量数据库基于这两项去搜索相关的内容。下面我们看一下查询结果:


from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfollm = OpenAI(temperature=0)metadata_field_info_chinese = [AttributeInfo(name="source",description="The lecture the chunk is from, should be one of `./data/MachineLearning-Lecture02.pdf`",type="string",),AttributeInfo(name="page",description="The page from the lecture",type="integer",),
]document_content_description_chinese = "machine learning"retriever_chinese = SelfQueryRetriever.from_llm(llm,vectorstore=vectordb_chinese,document_contents=document_content_description_chinese,metadata_field_info=metadata_field_info_chinese,verbose=True
)query = "MachineLearning-Lecture02讲了什么内容?"# 当你第一次执行下一行时,你会收到关于predict_and_parse已被弃用的警告。 这可以安全地忽略。
docs_chinese = retriever_chinese.get_relevant_documents(query)docs_chinese

从结果的metadata信息可以看到,检索到的结果都是在MachineLearning-Lecture02中。

3
[Document(page_content='MachineLearning-Lecture01  \nInstructor (Andrew Ng):  Okay...', metadata={'page': 0, 'source': './data/MachineLearning-Lecture02.pdf'}),
Document(page_content="joys of machine learning firs thand and really try to...', metadata={'page': 10, 'source': './data/MachineLearning-Lecture02.pdf'}),
Document(page_content="So in this class, we've tried to convey to you a broad set of principl...', metadata={'page': 2, 'source': './data/MachineLearning-Lecture02.pdf'}),
Document(page_content="Similarly, every time you write a check, I ac tually don'...', metadata={'page': 3, 'source': './data/MachineLearning-Lecture02.pdf'})]

1.5、其他技巧:压缩

在使用向量检索获取相关文档时,直接返回整个文档片段可能带来资源浪费,因为实际相关的只是文档的一小部分。为改进这一点,LangChain提供了一种“压缩”检索机制。其工作原理是,先使用标准向量检索获得候选文档,然后基于查询语句的语义,使用语言模型压缩这些文档,只保留与问题相关的部分。 例如,对“蘑菇的营养价值”这个查询,检索可能返回整篇有关蘑菇的长文档。经压缩后,只提取文档中与“营养价值”相关的句子。

从下图中我们看到,当向量数据库返回了所有与问题相关的所有文档块的全部内容后,会有一个Compression LLM来负责对这些返回的文档块的内容进行压缩,所谓压缩是指仅从文档块中提取出和用户问题相关的内容,并舍弃掉那些不相关的内容。
在这里插入图片描述
下面的代码中我们定义了一个 LLMChainExtractor ,它是一个压缩器,它负责从向量数据库返回的文档块中提取相关信息,然后我们还定义了 ContextualCompressionRetriever ,它有两个参数:base_compressorbase_retriever,其中 base_compressor 是我们前面定义的 LLMChainExtractor 的实例,base_retriever是早前定义的 vectordb 产生的检索器。

现在当我们提出问题后,查看结果文档,我们可以看到两件事。

  • 1、它们比正常文档短很多
  • 2、仍然有一些重复的东西,这是因为在底层我们使用的是语义搜索算法。

从上述例子中,我们可以发现这种压缩可以有效提升输出质量,同时节省通过长文档带来的计算资源浪费,降低成本。上下文相关的压缩检索技术,使得到的支持文档更严格匹配问题需求,是提升问答系统效率的重要手段。读者可以在实际应用中考虑这一技术。

from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractordef pretty_print_docs(docs):print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]))llm = OpenAI(temperature=0)# 压缩器
compressor = LLMChainExtractor.from_llm(llm)  # 带压缩的检索器
compression_retriever_chinese = ContextualCompressionRetriever(base_compressor=compressor,base_retriever=vectordb_chinese.as_retriever()
)# 对源文档进行压缩
question_chinese = "machine learning是什么?"
compressed_docs_chinese = compression_retriever_chinese.get_relevant_documents(question_chinese)
pretty_print_docs(compressed_docs_chinese)
Document 1:"machine learning grew out of early work in AI, early work in artificial intelligence. And over the last — I wanna say last 15 or last 20 years or so, it's been viewed as a sort of growing new capability for computers."
----------------------------------------------------------------------------------------------------
Document 2:"machine learning grew out of early work in AI, early work in artificial intelligence. And over the last — I wanna say last 15 or last 20 years or so, it's been viewed as a sort of growing new capability for computers."
----------------------------------------------------------------------------------------------------
Document 3:"machine learning是什么" and "Arthur Samuel defined machine learning informally as the [inaudible] that gives computers to learn — [inaudible] that gives computers the ability to learn without being explicitly programmed."
----------------------------------------------------------------------------------------------------
Document 4:"machine learning是什么" and "Arthur Samuel defined machine learning informally as the [inaudible] that gives computers to learn — [inaudible] that gives computers the ability to learn without being explicitly programmed."

2、结合各种技术

为了去掉结果中的重复文档,我们在从向量数据库创建检索器时,可以将搜索类型设置为 MMR 。然后我们可以重新运行这个过程,可以看到我们返回的是一个过滤过的结果集,其中不包含任何重复的信息。

compression_retriever_chinese = ContextualCompressionRetriever(base_compressor=compressor,base_retriever=vectordb_chinese.as_retriever(search_type = "mmr")
)question_chinese = "machine learning是什么?"
compressed_docs_chinese = compression_retriever_chinese.get_relevant_documents(question_chinese)
pretty_print_docs(compressed_docs_chinese)
Document 1:"machine learning grew out of early work in AI, early work in artificial intelligence. And over the last — I wanna say last 15 or last 20 years or so, it's been viewed as a sort of growing new capability for computers."
----------------------------------------------------------------------------------------------------
Document 2:"Arthur Samuel managed to write a checkers program that could play checkers much better than he personally could, and this is an instance of maybe computers learning to do things that they were not programmed explicitly to do." "Tom Mitchell, who says that a well-posed learning problem is defined as follows: He says that a computer program is set to learn from an experience E with respect to some task T and some performance measure P if its performance on T as measured by P improves with experience E."
----------------------------------------------------------------------------------------------------
Document 3:
"machine learning is the most exciting field of all the computer sciences" and "machine learning is one of those things that has and is having a large impact on many applications."

3、其他类型的检索

值得注意的是,vetordb 并不是唯一一种检索文档的工具。LangChain 还提供了其他检索文档的方式,例如:TF-IDFSVM

这里我们定义了 SVMRetriever ,和 TFIDFRetriever 两个检索器,接下来我们分别测试 TF-IDF 检索以及 SVM 检索的效果,可以看出,TF-IDF和SVM 检索的效果很差。

from langchain.retrievers import SVMRetriever
from langchain.retrievers import TFIDFRetriever
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter# 加载PDF
loader_chinese = PyPDFLoader("./data/MachineLearning-Lecture01.pdf")
pages_chinese = loader_chinese.load()
all_page_text_chinese = [p.page_content for p in pages_chinese]
joined_page_text_chinese = " ".join(all_page_text_chinese)# 分割文本
text_splitter_chinese = RecursiveCharacterTextSplitter(chunk_size = 1500,chunk_overlap = 150)
splits_chinese = text_splitter_chinese.split_text(joined_page_text_chinese)# 检索
svm_retriever = SVMRetriever.from_texts(splits_chinese, embedding)
tfidf_retriever = TFIDFRetriever.from_texts(splits_chinese)question_chinese = "这门课的主要主题是什么?" 
docs_svm_chinese = svm_retriever.get_relevant_documents(question_chinese)
print(docs_svm_chinese[0])question_chinese = "machine learning是什么?"
docs_tfidf_chinese = tfidf_retriever.get_relevant_documents(question_chinese)
print(docs_tfidf_chinese[0])
page_content="let me just check what questions you have righ t now. So if there are no questions, I'll just \nclose with two reminders, which are after class today or as you start to talk with other \npeople in this class, I just encourage you again to start to form project partners, to try to \nfind project partners to do your project with. And also, this is a good time to start forming \nstudy groups, so either talk to your friends  or post in the newsgroup, but we just \nencourage you to try to star t to do both of those today, okay? Form study groups, and try \nto find two other project partners.  \nSo thank you. I'm looking forward to teaching this class, and I'll see you in a couple of \ndays.   [End of Audio]  \nDuration: 69 minutes"
page_content="MachineLearning-Lecture01  \nInstructor (Andrew Ng):  Okay. Good morning. Welcome to CS229, the machine \nlearning class. So what I wanna do today is ju st spend a little time going over the logistics \nof the class, and then we'll start to  talk a bit about machine learning.  \nBy way of introduction, my name's  Andrew Ng and I'll be instru ctor for this class. And so \nI personally work in machine learning, and I' ve worked on it for about 15 years now, and \nI actually think that machine learning is th e most exciting field of all the computer \nsciences. So I'm actually always excited about  teaching this class. Sometimes I actually \nthink that machine learning is not only the most exciting thin g in computer science, but \nthe most exciting thing in all of human e ndeavor, so maybe a little bias there.  \nI also want to introduce the TAs, who are all graduate students doing research in or \nrelated to the machine learni ng and all aspects of machin e learning. Paul Baumstarck \nworks in machine learning and computer vision.  Catie Chang is actually a neuroscientist \nwho applies machine learning algorithms to try to understand the human brain. Tom Do \nis another PhD student, works in computa tional biology and in sort of the basic \nfundamentals of human learning. Zico Kolter is  the head TA — he's head TA two years \nin a row now — works in machine learning a nd applies them to a bunch of robots. And \nDaniel Ramage is — I guess he's not here  — Daniel applies l earning algorithms to"

4、总结

今天的课程涵盖了向量检索的多项新技术,让我们快速回顾关键要点:

  • 1、MMR 算法可以实现兼具相关性与多样性的检索结果,避免信息冗余。

  • 2、定义元数据字段可以进行针对性过滤,提升匹配准确率。

  • 3、SelfQueryRetriever 模块通过语言模型自动分析语句,提取查询字符串与过滤条件,无需手动设置,使检索更智能。

  • 4、ContextualCompressionRetriever 实现压缩检索,仅返回与问题相关的文档片段,可以大幅提升效率并节省计算资源。

  • 5、除向量检索外,还简要介绍了基于 SVM 和 TF-IDF 的检索方法。

这些技术为我们构建可交互的语义搜索模块提供了重要支持。熟练掌握各检索算法的适用场景,将大大增强问答系统的智能水平。

Reference

  • [1] 吴恩达老师的教程
  • [2] DataWhale组织

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/198476.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uni-app:前端实现心跳机制(全局)+局部页面控制心跳暂停和重新心跳

一、App.vue全局中写入心跳 在data中定义变量heartbeatTimer,便于暂停心跳使用在onLaunch中引用开始心跳的方法startHeartbeat()写入开始心跳方法写入暂停心跳方法写入请求后端刷心跳机制 定义变量 // 在全局设置的心跳机制中添加一个变量来保存定时器的标识 data(…

Find My蓝牙耳机|苹果Find My技术与耳机结合,智能防丢,全球定位

蓝牙耳机就是将蓝牙技术应用在免持耳机上,让使用者可以免除恼人电线的牵绊,自在地以各种方式轻松通话。自从蓝牙耳机问世以来,一直是行动商务族提升效率的好工具。正是应为蓝牙耳机小巧无线,人们越来越喜欢随身携带蓝牙耳机出门&a…

【论文阅读】基于隐蔽带宽的汽车控制网络鲁棒认证(一)

文章目录 Abstract第一章 引言1.1 问题陈述1.2 研究假设1.3 贡献1.4 大纲 第二章 背景和相关工作2.1 CAN安全威胁2.1.1 CAN协议设计2.1.2 CAN网络攻击2.1.3 CAN应用攻击 2.2 可信执行2.2.1 软件认证2.2.2 消息身份认证2.2.3 可信执行环境2.2.4 Sancus2.2.5 VulCAN 2.3 侧信道攻…

文件编码、转换、乱码问题

文件编码 用来表示文本内容的字符集和字符编码方式,决定了在文本文件中使用的字符集和字符的二进制表示方式。常见的文件编码包括 UTF-8、UTF-16、ASCII、ISO-8859-1 等。选择文件编码时,需要考虑到所支持的字符集范围、编码方式对特定语言的支持程度以…

手机,蓝牙开发板,TTL/USB模块,电脑四者之间的通讯

一,意图 通过手机蓝牙连接WeMosD1R32开发板,开发板又通过TTL转USB与电脑连接.手机通过蓝牙控制开发板上的LED灯的开,关,闪等动作,在电脑上打开串口监视工具观察其状态.也可以通过电脑上的串口监视工具来控制开发板上LED灯的动作,而在手机蓝牙监测工具中显示灯的状态. 二,原料…

在Go编程中调用外部命令的几种场景

1.摘要 在很多场合, 使用Go语言需要调用外部命令来完成一些特定的任务, 例如: 使用Go语言调用Linux命令来获取执行的结果,又或者调用第三方程序执行来完成额外的任务。在go的标准库中, 专门提供了os/exec包来对调用外部程序提供支持, 本文将对调用外部命令的几种使用方法进行总…

代码逻辑修复与其他爬虫ip库的应用

在一个项目中,由于需要设置 http_proxy 来爬虫IP访问网络,但在使用 requests 库下载文件时遇到了问题。具体表现为在执行 Python 脚本时,程序会阻塞并最终超时,无法正常完成文件下载。 解决方案 针对这个问题,我们可以…

kubenetes-服务发现和负载均衡

一、服务发布 kubenetes把服务发布至集群内部或者外部,服务的三种不同类型: ClusterlPNodePortLoadBalancer ClusterIP是发布至集群内部的一个虚拟IP,通过负载均衡技术转发到不同的pod中。 NodePort解决的是集群外部访问的问题,用户可能不…

基于C#实现最长公共子序列

一、作用 最长公共子序列的问题常用于解决字符串的相似度,是一个非常实用的算法,作为码农,此算法是我们的必备基本功。 二、概念 举个例子,cnblogs 这个字符串中子序列有多少个呢?很显然有 27 个,比如其…

人工智能-深度学习之残差网络(ResNet)

随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。更重要的是设计网络的能力,在这种网络中,添加层会使网络更具表现力, 为了取得质的突破,我们需要一些数学基础知识。 ResNet沿…

构建自定义ChatGPT,微软推出Copilot Studio

11月16日,微软在美国西雅图举办“Microsoft Ignite 2023”全球开发者大会。本次人工智能成为重要主题,微软几乎把所有产品都集成了生成式AI功能并发布了一系列全新产品。 其中,微软重磅推出了Copilot Studio(预览版)&…

助力安全生产--韩施电气为您提供电动机保护及电机故障解决方

上海韩施电气自成立于2008年,是一家专门从事销售电气自动化设备、电力设备、机电设备的综合型贸易公司,公司自成立以来一直专注于EOCR产品的推广销售和技术服务,成为韩国施耐德EOCR在国内的总代理,并授予代理证书,我们…

11 月 11 日 ROS 学习笔记——ROS 架构及概念

文章目录 前言一、 ROS 文件系统级1). 工作空间 Ws2). 功能包3). 消息 msg4). 服务 srv 二、计算图级1). 动态加载节点 nodelet2). 主题 topic3). 服务 srv4). 消息 msg5). 试用练习5). 创建工作空间6). 创建 ROS 功能包和元功能包7). 编译ROS功能包8). 使用 ROS 节点9). 使用主…

球幕投影有哪些常见的物理表现形式?

近年来,投影技术不断发展完善,给内容的表达方式带来了突破,使其展示形式不再局限于平面,即使在弧面、球面等异形幕墙上,也能呈现出令人惊叹的视觉画面。其中球幕投影备受关注,它以半球形屏幕将图像投影到球…

2023年AI生成音频研究报告

第一章 行业概况 1.1 定义 AI音频生成行业,作为人工智能生成内容(AIGC)技术渗透的关键领域,正迅速成为技术革新的前沿阵地。这一领域专注于运用先进的人工智能技术和复杂算法来创造音频内容,覆盖了语音合成、音乐制作…

直流充电桩测试仪的作用

直流充电桩测试仪主要用于对充电桩进行全面的功能测试和性能评估,以确保其正常运行和安全使用。直流充电桩测试仪可以对充电桩的各个功能进行测试,包括连接性测试、通信测试、充电功率测试等。通过测试可以检测充电桩是否正常工作,是否能够正…

【开源】基于Vue.js的高校宿舍调配管理系统

项目编号: S 051 ,文末获取源码。 \color{red}{项目编号:S051,文末获取源码。} 项目编号:S051,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能需求2.1 学生端2.2 宿管2.3 老师端 三、系统…

基于C#实现字符串相似度

一、概念 对于两个字符串 A 和 B,通过基本的增删改将字符串 A 改成 B,或者将 B 改成 A,在改变的过程中我们使用的最少步骤称之为“编辑距离”。比如如下的字符串:我们通过种种操作,痉挛之后编辑距离为 3,不…

MES管理系统与ERP系统的实施顺序与决策

在现今的数字化时代,制造企业纷纷寻求通过先进的系统来提升运营效率。其中,ERP管理系统与MES管理系统被誉为是数字化转型的两大利器。然而,在推进这两个系统时,企业常常面临一个关键问题:究竟应该先实施哪一个系统&…

rocketmq 安装dashboard1.0.0 mq消息控制台安装 rocketmq控制台安装 rocketmq-dashboard-1.0.0编译安装

1. 官网: 下载 | RocketMQ 2. dashboard安装包位置: 在连接最下面,点击download.zip即可 3. 需要安装maven, 编译命令: mvn clean install -U -Dmaven.test.skiptrue4. 启动jar: java -jar rocketmq-dashboard-1.0.0.jar &…