Netty源码学习4——服务端是处理新连接的netty的reactor模式

零丶引入

在前面的源码学习中,梳理了服务端的启动,以及NioEventLoop事件循环的工作流程,并了解了Netty处理网络io重要的Channel ,ChannelHandler,ChannelPipeline。

这一篇将学习服务端是如何构建新的连接。

一丶网络包接收流程

当客户端发送的网络数据帧通过网络传输到网卡时,网卡的DMA引擎将网卡接收缓冲区中的数据拷贝到DMA环形缓冲区,数据拷贝完成后网卡硬件触发硬中断,通知操作系统数据已到达。

随后网卡中断处理程序将DMA环形缓冲区的数据拷贝到sk_buffer,sk_buffer位于内核中,它提供了一个缓冲区,使得网卡中断程序可以将他接收到的数据暂存起来,避免数据丢失和切换。

随后发起软中断,网络协议栈会处理数据包,对数据包进行解析,路由,分发(根据目的端口号,分发给对应的应用程序,通过网络编程套接字,应用程序可以监听指定端口号,并接受网络协议栈的数据包)

  • 当新的连接建立时,网络协议处理栈会将这个连接的套接字标记为可读,并生成一个accept事件,这个事件通知应用程序有新的连接需要处理

  • 当已经建立的连接上有数据到达时,网络协议处理栈会将套接字标记为刻度,并生成一个read事件,这个事件通知应用程序有数据可供读取

  • 当应用程序向已经建立的连接写入数据时,如果写缓冲区有足够的空间,写操作会立即完成,不会产生write事件。但如果写缓冲区已满,那么写操作将被暂停,当写缓冲区有足够的空间时,write事件将被触发,通知应用程序可以继续写入数据。

也就是说netty 服务端程序会监听不同的网络事件,并进行处理,这也是源码学习的切入点!

二丶服务端NioEventLoop处理网络IO事件

image-20231119144133597

如上是NioEventLoop的运行机制,在《Netty源码学习2——NioEventLoop的执行》中我们进行了大致流程的学习,这一篇我么主要关注其run中处理网络IO事件的部分。

image-20231119144828807

无论是否优化,最终都是拿到就绪的SelectionKey,循环处理每一个就绪的网络事件,如下便是处理的逻辑:

image-20231119145215627

可以看到无论是accept事件还是read事件都是调用AbstractNioChannel的Unsafe#read方法

Unsafe是对netty对底层网络事件处理的封装,下面我们先看下AbstractNioChannel的类图,可以看到NioServerSocketChannel,和NioSocketChannel都使用继承了AbstractNioChannel,只是父类有所不同

image-20231119145637315

那么NioServerSocketChannel和NioSocketChannel是什么时候Accept or read事件感兴趣的昵?

三丶NioServerSocketChannel设置对accept事件感兴趣

重点在ServerBootstrap#bind中,此方法会调用doBind0

image-20231119151109334

doBind0会调用Channel#bind,然后处理ChannelPipeline#bind的执行,由于bind是出站事件,将从DefaultChannelPipeline的TailContext开始执行,然后调用到HeadContext#bind方法,最终会调用NioServerSocketChannel的unsafe#bind方法

如下是NioServerSocketChannel的unsafe#bind的内容:

image-20231119152218478

主要完成两部分操作:

  • 调用java原生ServerSocketChannel#bind方法,进行端口绑定,这样操作系统网络协议栈在分发网络数据的时候,才直到该分发到这个端口的ServerSocketChannel

  • 向EventLoop中提交一个pipeline.fireChannelActive()的任务,将在pipeline上触发channelActive方法,HeadContext#channelActive将被调用到

image-20231119152722699

  • 这里将调用到Channel#read方法,最终会调用到HeadContext#read

image-20231119153004210

四丶服务端处理Accept事件

前面我们说到,NioEventLoop处理accept事件和read事件都是调用unsafe#read方法,如下是NioServerSocketChannel#unsafe的read方法

  public void read() {assert eventLoop().inEventLoop();final ChannelConfig config = config();final ChannelPipeline pipeline = pipeline();final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();allocHandle.reset(config);boolean closed = false;Throwable exception = null;try {try {do {//读取数据int localRead = doReadMessages(readBuf);if (localRead == 0) {break;}if (localRead < 0) {closed = true;break;}// 计数allocHandle.incMessagesRead(localRead);} while (continueReading(allocHandle));} catch (Throwable t) {exception = t;}int size = readBuf.size();for (int i = 0; i < size; i ++) {readPending = false;// 触发channelReadpipeline.fireChannelRead(readBuf.get(i));}readBuf.clear();allocHandle.readComplete();// 触发channelReadCompletepipeline.fireChannelReadComplete();// 省略} finally {// 省略}}

这里出现一个RecvByteBufAllocator.Handle,这里不需要过多关注,在NioServerSocketChannel建立连接的过程中,它负责控制是否还需要继续读取数据

image-20231119211749627

ServerSocketChannel类提供了accept()方法,用于接受客户端的连接请求,返回一个SocketChannel代表了一个底层的TCP连接。

image-20231119212822535

如上将jdk SocketChannel包装NioSocketChannel的时候会设置SocketChannel非阻塞并在属性readInterestOp记录感兴趣事件为read

包装生成的NioSocketChannel会放到List中,后续每一个就绪的连接会一次传播ChannelRead,并最终传播ChannelReadComplete

image-20231119213310003

1.channeRead事件的传播

上面说到NioEventLoop读取NioServerSocketChannel上的accept事件,将每一个新连接封装为NioServerChannel后,将依次触发channelRead。

如下是ServerBootstrapAcceptor#channelRead方法,可以看到它会将读取生成的NioServerChannel注册到childGroup,这里的childGroup就是ServerBootstrap启动时候指定EventLoopGroup(主从reactor模式中的从reactor)

image-20231119215440660

也就是说主reactor负责处理accept事件,从reactor负责处理read事件

2.channelReadComplete事件传播

大多数人看到 channelReadComplete 都会认为这是 Netty 读取了完整的数据,然而有时却不是这样。channelReadComplete 其实只是表明了本次从 Socket 读了数据,该方法通常可以用来进行一些收尾工作,例如发送响应数据或进行资源的释放等。channelReadComplete方法在每次读取数据完成后,即使没有更多的数据可读,也会被调用一次。

五丶netty对多种reactor模式的支持

这里其实可以看出netty对多种reactor模式(单线程,多线程,主从reactor)的支持

image-20231119221320996

我们其实可以通过修改bossGroup,和workerGroup使netty使用不同的reactor模式

六丶将NioSocketChannel注册到从reactor

上面我们说到主reactor监听accept事件后传播channelRead事件,最终由ServerBootstrapAcceptor调用childGroup#register将包装生成的NioSocketChannel注册到从reactor(也就是workerGroup——EventLoopGroup)下面我们看看这个注册会发生什么

image-20231119221631909

首先workerGroup这个EventLoopGroup会调用next方法选择出一个EventLoop执行register,然后

  • 将NioSocketChannel中的jdk SockectChannel注册到Selector中,并将NioSocketChannel当作附件,这样selector#select到事件的时候,可以从附件中拿到网络事件对应的NioSocketChannel

image-20231119222336843

  • 触发handlerAdd

image-20231119223342982

  • 这一步触发ChannelHandler#handlerAdded

  • 最终会调用到childHandler中指定的ChannelInitializer,它会将我们指定的ServerHandler(这里可以扩展我们的业务处理逻辑)加到NioSockectChannel的pipeline中

image-20231119223655423

  • 触发ChannelRegistered

  • 触发channelActive

  • 由于这是一个新连接,是第一次注册到EventLoop,因此会触发channelActive

  • 这将调用到DefaultChannelPipeline的HeadContext#readIfIsAutoRead,最终就和我们第三节的【NioServerSocketChannel设置对accept事件感兴趣】差不多——HeadContext#readIfIsAutoRead会调用NioSockectChannel的read方法,最终调用到NioSockectChannel#unsafe的read方法——将注册对read事件感兴趣

image-20231119225442369

七丶再看Netty的Reactor模式

图片

笔者认为netty的reactor有以下几个要点

  • ServerBootstrap#bind方法

  • 不仅仅会绑定端口,还会触发channelActive事件,从而使DefaultChannelPipeline中的HeadContext触发netty channel unsafe#beginRead,注册ServerSockectChannel对accept感兴趣

  • NioEventLoop处理新连接

  • 这一步Netty 使用Selector进行IO多路复用,当accept事件产生的时候,调用NioServerSocketChannel#unsafe的read方法,这一步会将新连接封装NioSocketChannel,然后将对应连接的套接字注册到Selector上,然后传播channeRead事件

  • ServerBootstrapAcceptor 对channeRead事件的处理

  • 笔者认为这是netty reactor模式的核心,它将NioSocketChannel注册到从reactor上,让子reactor负责处理NioSocketChannel上的事件,并最终注册SocketChannel对read事件感兴趣!

和tomcat的reactor(《Reactor 模式与Tomcat中的Reactor 》)有异曲同工之妙,只是netty Pipeline的设计让整个流程更具备扩展性,当然也增加了源码学习的复杂度doge

文章转载自:Cuzzz

原文链接:https://www.cnblogs.com/cuzzz/p/17842964.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/200687.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【STM32】W25Q64 SPI(串行外设接口)

一、SPI通信 0.IIC与SPI的优缺点 https://blog.csdn.net/weixin_44575952/article/details/124182011 1.SPI介绍 同步&#xff08;有时钟线&#xff09;&#xff0c;高速&#xff0c;全双工&#xff08;数据发送和数据接收各占一条线&#xff09; 1&#xff09;SCK:时钟线--&…

【数据结构】栈和队列的模拟实现

前言&#xff1a;前面我们学习了单链表并且模拟了它的实现&#xff0c;今天我们来进一步学习&#xff0c;来学习栈和队列吧&#xff01;一起加油各位&#xff0c;后面的路只会越来越难走需要我们一步一个脚印&#xff01; &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x…

Golang基础-面向对象篇

文章目录 struct结构体类的表示与封装类的继承多态的基本要素与实现interface空接口反射变量的内置pairreflect包解析Struct TagStruct Tag在json中的应用 struct结构体 在Go语言中&#xff0c;可以使用type 关键字来创建自定义类型&#xff0c;这对于提高代码的可读性和可维护…

win11,引导项管理

1&#xff0c;打开cmd,输入msconfig 2,进入引导选项卡 3&#xff0c;删除不需要的引导项

ETL-使用kettle批量复制sqlserver数据到mysql数据库

文章标题 1、安装sqlserver数据库2、下载kettle3、业务分析4、详细流程&#xff08;1&#xff09;转换1&#xff1a;获取sqlserver所有表格名字&#xff0c;将记录复制到结果&#xff08;2&#xff09;转换2&#xff1a;从结果设置变量&#xff08;3&#xff09;转换3&#xff…

【Linux】:共享内存

共享内存 一.原理二.创建共享内存1.shmget2.写一个共享内存代码 三.进行通信1.各种接口2.各接口使用代码3.一次简单的通信四.共享内存的特点 一.原理 直接原理 共享内存顾名思义就是共同使用的一块空间。 很明显操作系统需要对这块内存进行管理&#xff0c;那么就避免不了先描…

Servlet执行流程Servlet 生命周期

Servlet 生命周期 对象的生命周期指一个对象从被创建到被销毁的整个过程 import javax.servlet.*; import javax.servlet.annotation.WebServlet; import java.io.IOException; WebServlet(urlPatterns "/demo",loadOnStartup 10) public class ServletDemo imple…

华为ac+fit漫游配置案例

Ap漫游配置: 其它配置上面一样,ap管理dhcp和业务dhcp全在汇聚交换机 R1: interface GigabitEthernet0/0/0 ip address 11.1.1.1 255.255.255.0 ip route-static 12.2.2.0 255.255.255.0 11.1.1.2 ip route-static 192.168.0.0 255.255.0.0 11.1.1.2 lsw1: vlan batch 100 200…

存储日志数据并满足安全要求

日志数据是包含有关网络中发生的事件的记录的重要信息&#xff0c;日志数据对于监控网络和了解网络活动、用户操作及其动机至关重要。 由于网络中的每个设备都会生成日志&#xff0c;因此收集的数据量巨大&#xff0c;管理和存储所有这些数据成为一项挑战&#xff0c;日志归档…

Windows系统如何安装与使用TortoiseSVN客户端,并实现在公网访问本地SVN服务器

文章目录 前言1. TortoiseSVN 客户端下载安装2. 创建检出文件夹3. 创建与提交文件4. 公网访问测试 前言 TortoiseSVN是一个开源的版本控制系统&#xff0c;它与Apache Subversion&#xff08;SVN&#xff09;集成在一起&#xff0c;提供了一个用户友好的界面&#xff0c;方便用…

2023年以就业为目的学习Java还有必要吗?

文章目录 1活力四射的 Java2从零开始学会 Java3talk is cheap, show me the code4结语写作末尾 现在学 Java 找工作还有优势吗&#xff1f; 在某乎上可以看到大家对此问题的热议&#xff1a;“2023年以就业为目的学习Java还有必要吗&#xff1f;” 。有人说市场饱和&#xff0c…

关于lenra你需要了解的

monorepo&#xff1a;项目代码管理方式&#xff0c;单个仓库中管理多个项目是一种设计思想 lenra&#xff1a;是一种工具&#xff0c;对于使用npm和git管理多软件包代码仓库的工作流程进行优化 使用这些工具的优点&#xff1a; 公共依赖只要安装一次&#xff0c;Monorepo 中…

C/C++内存管理(1):C/C++内存分布,C++内存管理方式

一、C/C内存分布 1.1 1.2 二、C内存管理方式 C可以通过操作符new和delete进行动态内存管理。 2.1 new和delete操作内置类型 int main() {int* p1 new int;// 注意区分p2和p3int* p2 new int(10);// 对*p2进行初始化 10int* p3 new int[10];// p3 指向一块40个字节的int类…

网络运维与网络安全 学习笔记2023.11.21

网络运维与网络安全 学习笔记 第二十二天 今日目标 端口隔离原理与配置、路由原理和配置、配置多路由器静态路由 配置默认路由、VLAN间通信之路由器 端口隔离原理与配置 端口隔离概述 实现报文之间的2层隔离&#xff0c;除了使用VLAN技术以后&#xff0c;还可以使用端口隔…

Linux socket编程(5):三次握手和四次挥手分析和SIGPIPE信号的处理

在我之前写的Wireshark抓包&#xff1a;理解TCP三次握手和四次挥手过程中&#xff0c;通过抓包分析了TCP传输的三次握手和四次挥手的过程。在这一节中&#xff0c;将分析在Linux中的三次握手和四次挥手的状态和过程&#xff0c;另外还有一个在我们编程过程中值得注意的SIGPIPE信…

gitBash中如何使用Linux中的tree命令

文章目录 在gitBash中安装tree的目的如何安装安装完成,就可以直接完美适配Linux系统了在gitBash中安装tree的目的 如下图,powershell虽然可以看做是window下的Linux系统,但是根本就不适配很多Linux中的命令 如何安装 tree.exe安装网址 下载 tree 命令的 二进制包,安装 tr…

OAK相机通过振动测试!

编辑&#xff1a;OAK中国 首发&#xff1a;oakchina.cn 喜欢的话&#xff0c;请多多&#x1f44d;⭐️✍ 内容可能会不定期更新&#xff0c;官网内容都是最新的&#xff0c;请查看首发地址链接。 Hello&#xff0c;大家好&#xff0c;这里是OAK中国&#xff0c;我是助手君。 当…

【python】Python生成GIF动图,多张图片转动态图,pillow

pip install pillow 示例代码&#xff1a; from PIL import Image, ImageSequence# 图片文件名列表 image_files [car.png, detected_map.png, base64_image_out.png]# 打开图片 images [Image.open(filename) for filename in image_files]# 设置输出 GIF 文件名 output_g…

java算法学习索引之数组矩阵问题

一 将正方形矩阵顺时针转动90 给定一个NN的矩阵matrix&#xff0c;把这个矩阵调整成顺时针转动90后的形式。 顺时针转动90后为&#xff1a; 【要求】额外空间复杂度为O&#xff08;1&#xff09;。 public void rotate(int[][] matrix) {int tR 0; // 左上角行坐标int tC 0;…

香港科技大学广州|机器人与自主系统学域博士招生宣讲会—同济大学专场!!!(暨全额奖学金政策)

在机器人和自主系统领域实现全球卓越—机器人与自主系统学域 硬核科研实验室&#xff0c;浓厚创新产学研氛围&#xff01; 教授亲临现场&#xff0c;面对面答疑解惑助攻申请&#xff01; 一经录取&#xff0c;享全额奖学金1.5万/月&#xff01; &#x1f559;时间&#xff1a;…