竞赛 : 题目:基于深度学习的水果识别 设计 开题 技术

1 前言

Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解,
已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中,
以此来提高了水果图像的识别性能。

3 识别原理

3.1 传统图像识别原理

传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、
遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

在这里插入图片描述

3.2 深度学习水果识别

CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

在这里插入图片描述

学长本次采用的 CNN 架构如图:
在这里插入图片描述

4 数据集

  • 数据库分为训练集(train)和测试集(test)两部分

  • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

  • 图片类别可由图片名称中提取。

训练集图片预览

在这里插入图片描述

测试集预览
在这里插入图片描述

数据集目录结构
在这里插入图片描述

5 部分关键代码

5.1 处理训练集的数据结构

import os
import pandas as pd    train_dir = './Training/'
test_dir = './Test/'
fruits = []
fruits_image = []for i in os.listdir(train_dir):for image_filename in os.listdir(train_dir + i):fruits.append(i) # name of the fruitfruits_image.append(i + '/' + image_filename)
train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_imageprint(train_fruits)

5.2 模型网络结构

import matplotlib.pyplot as plt
​    import seaborn as sns
​    from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
​    from glob import glob
​    from keras.models import Sequential
​    from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
​    img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
​    plt.imshow(img)
​    plt.axis("off")
​    plt.show()
​    array_image = img_to_array(img)# shape (100,100)print("Image Shape --> ", array_image.shape)# 131个类目fruitCountUnique = glob(train_dir + '/*' )numberOfClass = len(fruitCountUnique)print("How many different fruits are there --> ",numberOfClass)# 构建模型model = Sequential()model.add(Conv2D(32,(3,3),input_shape = array_image.shape))model.add(Activation("relu"))model.add(MaxPooling2D())model.add(Conv2D(32,(3,3)))model.add(Activation("relu"))model.add(MaxPooling2D())model.add(Conv2D(64,(3,3)))model.add(Activation("relu"))model.add(MaxPooling2D())model.add(Flatten())model.add(Dense(1024))model.add(Activation("relu"))model.add(Dropout(0.5))# 区分131类model.add(Dense(numberOfClass)) # outputmodel.add(Activation("softmax"))model.compile(loss = "categorical_crossentropy",optimizer = "rmsprop",metrics = ["accuracy"])print("Target Size --> ", array_image.shape[:2])## 

5.3 训练模型

    
​    train_datagen = ImageDataGenerator(rescale= 1./255,
​                                       shear_range = 0.3,
​                                       horizontal_flip=True,
​                                       zoom_range = 0.3)
​    test_datagen = ImageDataGenerator(rescale= 1./255)epochs = 100batch_size = 32train_generator = train_datagen.flow_from_directory(train_dir,target_size= array_image.shape[:2],batch_size = batch_size,color_mode= "rgb",class_mode= "categorical")test_generator = test_datagen.flow_from_directory(test_dir,target_size= array_image.shape[:2],batch_size = batch_size,color_mode= "rgb",class_mode= "categorical")for data_batch, labels_batch in train_generator:print("data_batch shape --> ",data_batch.shape)print("labels_batch shape --> ",labels_batch.shape)breakhist = model.fit_generator(generator = train_generator,steps_per_epoch = 1600 // batch_size,epochs=epochs,validation_data = test_generator,validation_steps = 800 // batch_size)#保存模型 model_fruits.h5model.save('model_fruits.h5')

顺便输出训练曲线

    #展示损失模型结果
​    plt.figure()
​    plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
​    plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
​    plt.title("Model Loss", color = "darkred", size = 13)
​    plt.legend()
​    plt.show()#展示精确模型结果plt.figure()plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)plt.title("Model Accuracy", color = "darkred", size = 13)plt.legend()plt.show()![在这里插入图片描述](https://img-blog.csdnimg.cn/686ace7db27c4145837ec2e09e8ad917.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBARGFuQ2hlbmctc3R1ZGlv,size_17,color_FFFFFF,t_70,g_se,x_16)

在这里插入图片描述

6 识别效果

from tensorflow.keras.models import load_model
import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import imagetrain_datagen = ImageDataGenerator(rescale= 1./255,shear_range = 0.3,horizontal_flip=True,zoom_range = 0.3)model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
train_dir = './Training/'train_generator = train_datagen.flow_from_directory(train_dir,target_size= array_image.shape[:2],batch_size = batch_size,color_mode= "rgb",class_mode= "categorical”)
print(train_generator.class_indices)

在这里插入图片描述

    fig = plt.figure(figsize=(16, 16))axes = []files = []predictions = []true_labels = []rows = 5cols = 2
# 随机选择几个图片
def getRandomImage(path, img_width, img_height):"""function loads a random image from a random folder in our test path"""folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))random_directory = np.random.randint(0, len(folders))path_class = folders[random_directory]file_path = os.path.join(path, path_class)file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]random_file_index = np.random.randint(0, len(file_names))image_name = file_names[random_file_index]final_path = os.path.join(file_path, image_name)return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_classdef draw_test(name, pred, im, true_label):BLACK = [0, 0, 0]expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,0.85, (255, 0, 0), 2)cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,0.85, (0, 255, 0), 2)return expanded_image
IMG_ROWS, IMG_COLS = 100, 100# predicting images
for i in range(0, 10):path = "./Test"img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)files.append(final_path)true_labels.append(true_label)x = image.img_to_array(img)x = x * 1./255x = np.expand_dims(x, axis=0)images = np.vstack([x])classes = model.predict_classes(images, batch_size=10)predictions.append(classes)class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())for i in range(0, len(files)):image = cv2.imread(files[i])image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])axes.append(fig.add_subplot(rows, cols, i+1))plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))plt.grid(False)plt.axis('off')
plt.show()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/201935.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 编码

编码: 加密: 通过加密算法和密钥进行 也可通过码表进行加密 对称加密: 缺点:可被截获 元数据---加密算法密钥密文 ----> 解密算法密钥元数据 算法:DES(短 56位),AES(长 128位)破解时间加长 非对称加密: 元数据-加密算法加密密钥 密文 --->加密算法解密密钥元数据 …

轻量封装WebGPU渲染系统示例<38>- 动态构建WGSL材质Shader(源码)

实现原理: 基于宏定义和WGSL文件系统实现(还在完善中...) 当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/DynamicShaderBuilding.ts 当前示例运行效果: 此示例基于此渲染系统实现,当前示例TypeScript…

高防服务器的工作原理

在当今互联网时代,网络安全问题日益突出,各种网络攻击层出不穷。为了保护企业的网络安全,高防服务器应运而生。那么,你是否了解高防服务器的工作原理呢?下面就让我们一起来探索一下。 高防服务器是一种能够有效抵御各种…

浅谈WPF之各种Template

前几天写了一篇文章【浅谈WPF之控件模板和数据模板】,有粉丝反馈说这两种模板容易弄混,不知道什么时候该用控件模块,什么时候该用数据模板,以及template和itemtemplate之间的关系等,今天专门写一篇文章,简述…

全局定制序列化

作用:将返回实体类中的属性如果为null 变成"" package com.example.micrweb.config;import com.fasterxml.jackson.core.JsonGenerator; import com.fasterxml.jackson.databind.JsonSerializer; import com.fasterxml.jackson.databind.ObjectMapper; import com.f…

vscode自动添加函数注释头插件使用方法

前言 在我们使用vscode编写程序时,经常需要为新增的函数编写注释,这样一来就会耗费不少时间在函数注释头格式操作上。本文介绍使用vscode的函数注释头自动添加插件的使用方法,提高工作效率。 1 安装Doxygen Documentation Generator插件 1…

代码规范之-理解ESLint、Prettier、EditorConfig

前言 团队多人协同开发项目,困扰团队管理的一个很大的问题就是:无可避免地会出现每个开发者编码习惯不同、代码风格迥异,为了代码高可用、可维护性,需要从项目管理上尽量统一和规范代码。理想的方式需要在项目工程化方面&#xff…

前端实现表格生成序号001、002、003自增

我们最终想要实现的效果如图&#xff0c;从后端获取数据之后&#xff0c;不使用data中的id&#xff0c;而是使用自己生成的按照顺序自增的序号id。 script <template><el-table :data"sticker" border style"width: 100%" id"stickerList&q…

本地训练,开箱可用,Bert-VITS2 V2.0.2版本本地基于现有数据集训练(原神刻晴)

按照固有思维方式&#xff0c;深度学习的训练环节应该在云端&#xff0c;毕竟本地硬件条件有限。但事实上&#xff0c;在语音识别和自然语言处理层面&#xff0c;即使相对较少的数据量也可以训练出高性能的模型&#xff0c;对于预算有限的同学们来说&#xff0c;也没必要花冤枉…

网络渗透测试(wireshark 抓取QQ图片)

1.打开wireshark 这里我用的wifi连接 所以点开wifi就好 打开wifi之后就开始在本机上进行抓包了 我们先给我们的QQ发送一张图片&#xff0c;用自己的手机发送给电脑 然后点击左上角的正方形&#xff0c;停止捕获抓包 QQ的关键词是oicq&#xff0c;所以我们直接找 打开oicq …

逸学java【初级菜鸟篇】9.3 Stream流

hi&#xff0c;我是逸尘&#xff0c;一起学java吧 得益于Lambda所带来的函数式编程&#xff0c;引入了一个全新的Stream流概念&#xff08;就是都基本使用lambda的形式&#xff09;。 流处理 我们首先理解什么是流处理&#xff0c;它类似于sql语句&#xff0c;可以执行非常复…

【每日OJ —— 622. 设计循环队列】

每日OJ —— 622. 设计循环队列 1.题目&#xff1a;622. 设计循环队列2.解法2.1.解法讲解2.1.1.算法讲解2.1.2.代码实现2.1.3.提交通过展示 1.题目&#xff1a;622. 设计循环队列 2.解法 1.本题有很多解法&#xff1a;可以使用数组&#xff0c;单链表&#xff0c;双链表&#x…

短期风速预测|LSTM|ELM|批处理(matlab代码)

1主要内容 该程序是预测类的基础性代码&#xff0c;程序对河北某地区的气象数据进行详细统计&#xff0c;程序最终得到pm2.5的预测结果&#xff0c;通过更改数据很容易得到风速预测结果。程序主要分为三部分&#xff0c;分别是基于LSTM算法、基于ELM算法和基于LSTM和批处理组合…

从零开始:Rust环境搭建指南

大家好&#xff01;我是lincyang。 今天&#xff0c;我们将一起探讨如何从零开始搭建Rust开发环境。 Rust环境搭建概览 Rust是一种系统编程语言&#xff0c;以其安全性、并发性和性能闻名。搭建Rust环境是学习和使用这一语言的第一步。 第一步&#xff1a;安装Rust Rust的…

CSS画一条线

<p style"border: 1px solid rgba(0, 0, 0, 0.1);"></p> 效果&#xff1a;

路由的控制与转发原理

场景1&#xff1a;路由器收到数据包后&#xff0c;会根据数据包的目标IP地址&#xff0c;计算出目标网段&#xff0c;再确定终端设备的具体位置。这个过程中&#xff0c;还需要计算出接口&#xff0c;或数据包下一跳的地址。最终会生成一条路由&#xff0c;即路径&#xff0c;存…

python实现鼠标实时坐标监测

python实现鼠标实时坐标监测 一、说明 使用了以下技术和库&#xff1a; tkinter&#xff1a;用于创建GUI界面。pyperclip&#xff1a;用于复制文本到剪贴板。pynput.mouse&#xff1a;用于监听鼠标事件&#xff0c;包括移动和点击。threading&#xff1a;用于创建多线程&…

PDF转Word,1行Python代码就够了,免费用

大家好&#xff0c;这里是程序员晚枫。 今年十一假期没出去旅游&#xff0c;在家里更新一套原创课程&#xff0c;&#x1f449;给小白的《50讲Python自动化办公》。 所有功能&#xff0c;都只需要1行代码&#xff0c;非常适合非程序员入门Python使用。 目前全网播放量直逼100…

二分查找——34. 在排序数组中查找元素的第一个和最后一个位置

文章目录 1. 题目2. 算法原理2.1 暴力解法2.2 二分查找左端点查找右端点查找 3. 代码实现4. 二分模板 1. 题目 题目链接&#xff1a;34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣&#xff08;LeetCode&#xff09; 给你一个按照非递减顺序排列的整数数组 nums&#…

2023年亚太杯数学建模思路 - 案例:粒子群算法

文章目录 1 什么是粒子群算法&#xff1f;2 举个例子3 还是一个例子算法流程算法实现建模资料 # 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 什么是粒子群算法&#xff1f; 粒子群算法&#xff08;Pa…