1主要内容
该程序是预测类的基础性代码,程序对河北某地区的气象数据进行详细统计,程序最终得到pm2.5的预测结果,通过更改数据很容易得到风速预测结果。程序主要分为三部分,分别是基于LSTM算法、基于ELM算法和基于LSTM和批处理组合算法,对于预测类程序,算法组合是创新的方向,很多预测都是通过智能算法对参数寻优+LSTM/ELM等算法进行组合,本次提供的三种基础性代码是对同一数据进行处理分析,并得到相应的预测结果,程序采用matlab编写,无需其他软件包,注释清楚,方便学习!
详实的气象数据是一大亮点。
- LSTM-长短时记忆
- ELM-极限学习机
极 限 学 习 机 是 在 原 来 单 隐 含 层 神 经 网 络 (Single-hidden Layer Feedforward Networks,SLFNs)上加以改进后,发展而成的新型智能算法。ELM 方法具有学习效率高的特点,被广泛应用于分类、回归、聚类和特征学习等问题中。作为 一种新型的学习算法,ELM 学习速度快、不容易陷入局部最优,对于单隐层神经网络,可以随机初始化输入权重和偏置并得到相应的输出权重,有效克制了局部 极限的问题。因为极限学习机不包括神经网络反向传播中参数优化的过程,而是 通过求解广义逆矩阵的途径一步求出隐含层的偏置量,这样既提高了算法的精度, 同时收敛速度更快,学习效果更好。
3程序结果
上面三个图是标准LSTM算法得到的预测结果,相对平均误差为0.4828。
上述两个图是LSTM+批处理得到的预测结果,相对平均误差为0.3690,可见增加批处理对于预测精度提成达23.6%。
上述两个图是ELM方法预测结果,相对平均误差为0.4052,较LSTM算法有所提升。