论文阅读:“Model-based teeth reconstruction”

文章目录

  • Abstract
  • Introduction
  • Teeth Prior Model
    • Data Preparation
    • Parametric Teeth Model
  • Teeth Fitting
    • Teeth Boundary Extraction
  • Reference

在这里插入图片描述

Abstract

近年来,基于图像的人脸重建方法日趋成熟。这些方法可以捕捉整个面部或面部特定区域(如头发、眼睛或眼睑)的高精细静态和动态几何模型。遗憾的是,基于图像的口腔捕捉方法,尤其是牙齿捕捉方法,却很少受到关注。然而,牙齿的精确渲染对于面部表情的逼真展示至关重要,目前高质量的面部动画都是通过繁琐的手工工作制作牙列模型。在牙科领域,开发了专门的口腔内牙齿扫描仪,但这种扫描仪还难以广泛使用。

在文章中,研究人员提出了第一种仅凭口腔区域的稀疏照片集就能无创重建整个人特定牙列的方法。该方法的基础是从高质量口扫模型中学习到的新参数牙列先验(parametric tooth row prior)。新的基于模型的重建方法将牙齿与照片相匹配,从而准确匹配可见牙齿,并合理生成遮挡牙齿(occluded teeth)。该方法不仅能无缝集成到整个面部的摄影测量多相机重建设置中,还能从普通的未校准照片甚至手机拍摄的短视频中获得高质量的牙齿建模。

Introduction

由于牙齿表面有半透明的牙釉质涂层,牙齿具有极强的镜面反射性,而由于牙齿下面的牙本质,牙齿又具有高度漫反射性,两者都表现出很强的表面下散射。因此,牙齿只有很少的可见特征,最明显的特征是单个牙齿之间的边界,这甚至不是牙齿表面的特征,因此使用摄影测量(photogrammetric)方法重建牙齿非常具有挑战性。

从另一方面看,牙齿是刚性的,不同对象的牙齿形状变化是可控的,因此牙齿可以很好地进行统计建模(statistical modeling)。基于相机的口腔内部重建由于 non-trivial occlusions 而变得更加复杂。如果不使用专用的嘴唇扩张装置,人们通常很难将嘴张得足够大,即使这样,通常也无法通过单一位姿看到整个口腔。

因此,这篇文章首次提出了一种方法,可从口腔区域的稀疏正常照片集重建牙齿。在这些图像中,人可以做出自然的嘴部表情,而无需在机械支撑下不舒服地张开嘴巴。

Contributions:

  • 提供了一个新的整排牙齿参数先验模型,该模型是从高质量石膏模型的数字化数据库中学习的。该牙齿模型对每颗牙齿的局部形状变化、整排牙齿中每颗牙齿的姿态变化以及整排牙齿的位置和比例进行了编码。它还对模型参数的先验分布进行了编码。
  • 提出了一种基于图像的新方法,该方法可重建特定个人的牙列,与输入图像中的可见牙齿相匹配,并在先验模型的基础上为部分遮挡和完全隐藏的牙齿生成合理的几何形状。

Teeth Prior Model

人类通常有 32 颗牙齿(去掉智齿后为 28 颗),分为上下两排,基本对称。牙齿分为四类:门牙(incisors)、犬牙(canines)、前臼齿(premolars)和臼齿(molars),如下图所示。

在这里插入图片描述

Data Preparation

为了建立牙齿数据库,我们从医学牙科领域获得了 86 排不同牙齿的高分辨率石膏三维扫描图像,其中包括上排牙齿和下排牙齿。其中一部分扫描结果如下图所示。

在这里插入图片描述
Teeth Templates. 为了建立和训练模型,需要一个牙齿数据库,每个牙齿都有独立的几何图形,并在不同的研究对象之间保持一致。研究人员首先手动(artistically create)创建了一个牙齿模板网格。由于四类牙齿的形状迥异,因而创建了四个独立的模板网格。为了完整起见,研究人员将牙齿一直建模到牙根。

Template Fitting. 现在,我们希望将牙齿模板网格实例与石膏扫描模型中的单个牙齿相匹配。研究人员设计了一种半自动模板拟合方法。首先,用户通过点击牙齿间边界以及牙齿和牙龈边界的几个点,为每颗牙齿定义一个分割轮廓。如下图(a),左门牙的轮廓用紫色标出,其他轮廓用绿色标出。根据所选点之间的高曲率路径自动计算分割轮廓。此外,用户还可以为每颗牙齿选择几个预定义的 landmarks(门牙和犬齿为三个,前臼齿和臼齿为五个),这些 landmarks 将指导配准及分割。下图(a) 用红色显示了其中一颗门牙的 landmarks。

在这里插入图片描述
对于每颗牙齿,首先根据选定的 landmarks 将适当的模板网格与牙齿进行刚性对齐,然后使用迭代拉普拉斯形变进行非刚性变形,以紧密贴合分割后的牙齿区域(上图(c,d))。

所有扫描模型拟合后的结果是一个包含 per-tooth 网格对应关系的齿列数据库。虽然上述方法中有几步需要人为操作,但建立数据库是一次性的(one-time investment)。

Parametric Teeth Model

从数学上讲,参数化牙齿模型是对典型牙列的形状和姿态偏差进行编码,计算结果为数据库的平均值(如下图所示)。

在这里插入图片描述

在这里插入图片描述

Teeth Fitting

Teeth Boundary Extraction

可以通过手动标注输入图像来获得牙齿轮廓。虽然这种方法是可行的,而且算法也可以在这种数据上运行,但随着图像数量的增加,这种方法很快就会变得极为繁琐。特别是对于基于视频的牙齿重建使用案例,手动标注是不切实际的。因此研究人员希望自动检测输入图像中的牙齿轮廓。

在这里插入图片描述
如上图所示,研究人员定义了三种类型的牙齿边界:牙齿、牙龈及嘴唇。明确区分牙龈和嘴唇对于防止牙齿模型牙龈线与嘴唇边界错误对齐至关重要。为了识别边界,文章采用了增强边缘学习(BEL) 算法。BEL 是一种用于边缘和物体边界检测的通用监督学习算法,它根据小块图像上的大量通用快速特征(包括梯度、滤波器响应直方图和不同尺度的哈尔小波)将图像像素分类为边界。研究人员在一组手工标注的输入图像上分别训练三个检测器,每个检测器对应上述特定的牙齿边界。下图显示了训练数据的几个示例。

在这里插入图片描述

Reference

[1] Wu, C. , Bradley, D. , Garrido, P. , Zollhfer, M. , Theobalt, C. , & Gross, M. , et al. (2016). Model-based teeth reconstruction. International Conference on Computer Graphics and Interactive Techniques. ACM.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/204065.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索H5的神秘世界:测试点解析

Html5 app实际上是Web app的一种,在测试过程中可以延续Web App测试的部分方法,同时兼顾手机端的一些特性即可,下面帮大家总结下Html5 app 相关测试方法! app内部H5测试点总结 1、业务逻辑 除基本功能测试外,需要关注的…

【微服务专题】微服务架构演进

目录 前言阅读对象阅读导航前置知识笔记正文一、系统架构的演变1.1 单体架构1.2 单体水平架构1.3 垂直架构1.4 SOA架构1.5 微服务架构 二、如何实现微服务架构2.1 微服务架构下的技术挑战2.2 微服务技术栈选型2.3 什么是Spring Cloud全家桶2.4 Spring Cloud Alibaba版本选择 学…

智慧化工~工厂设备检修和保全信息化智能化机制流程

化工厂每年需要现场检修很多机器,比如泵、压缩机、管道、塔等等,现场检查人员都是使用照相机,现场拍完很多机器后,回办公室整理乱糟糟的照片,但是经常照了之后无法分辨是哪台设备,而且现场经常漏拍&#xf…

HarmonyOS4.0系列——02、汉化插件、声明式开发范式ArkTS和类web开发范式

编辑器调整 我们在每次退出编辑器后再次打开会直接进入项目文件中,这样在新建项目用起来很是不方便,所以这里跟着设置一下就好 这样下次进入就不会直接跳转到当时的文件项目中!! 关于汉化 settings → plugins → installe…

耗时一个星期整理的APP自动化测试工具大全

在本篇文章中,将给大家推荐14款日常工作中经常用到的测试开发工具神器,涵盖了自动化测试、APP性能测试、稳定性测试、抓包工具等。 一、UI自动化测试工具 1. uiautomator2 openatx开源的ui自动化工具,支持Android和iOS。主要面向的编程语言…

西南科技大学数字电子技术实验二(SSI逻辑器件设计组合逻辑电路及FPGA实现 )预习报告

一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入法完成相关公式内容,不得贴手写图片。(注意:从抽象公式直接得出结果,不得分,页数可根据内容调整) 1、1位半加器 真值表: 逻…

flask 上传文件

from flask import Flask, request, render_template,redirect, url_for from werkzeug.utils import secure_filename import os from flask import send_from_directory # send_from_directory可以从目录加载文件app Flask(__name__)#UPLOAD_FOLDER media # 注意&#xff…

Me-and-My-Girlfriend-1

Me-and-My-Girlfriend-1 一、主机发现和端口扫描 主机发现,靶机地址192.168.80.147 arp-scan -l端口扫描,开放了22、80端口 nmap -A -p- -sV 192.168.80.147二、信息收集 访问80端口 路径扫描 dirsearch -u "http://192.168.80.147/" -e * …

深入探索Maven:优雅构建Java项目的新方式(一)

Maven高级 1,分模块开发1.1 分模块开发设计1.2 分模块开发实现 2,依赖管理2.1 依赖传递与冲突问题2.2 可选依赖和排除依赖方案一:可选依赖方案二:排除依赖 3,聚合和继承3.1 聚合步骤1:创建一个空的maven项目步骤2:将项目的打包方式改为pom步骤…

在Linux中对Docker中的服务设置自启动

先在Linux中安装docker,然后对docker中的服务设置自启动。 安装docker 第一步,卸载旧版本docker。 若系统中已安装旧版本docker,则需要卸载旧版本docker以及与旧版本docker相关的依赖项。 命令:yum -y remove docker docker-c…

2304. 网格中的最小路径代价 : 从「图论最短路」过渡到「O(1) 空间的原地模拟」

题目描述 这是 LeetCode 上的 「2304. 网格中的最小路径代价」 ,难度为 「中等」。 Tag : 「最短路」、「图」、「模拟」、「序列 DP」、「动态规划」 给你一个下标从 0 开始的整数矩阵 grid,矩阵大小为 m x n,由从 0 到 的不同整数组成。 你…

设计模式之十二:复合模式

模式通常被一起使用,并被组合在同一个解决方案中。 复合模式在一个解决方案中结合两个或多个模式,以解决一般或重复发生的问题。 首先重新构建鸭子模拟器: package headfirst.designpatterns.combining.ducks;public interface Quackable …

Scala如何写一个通用的游戏数据爬虫程序

以前想要获取一些网站数据的时候,都是通过人工手动复制粘贴,这样的效率及其低下。数据少无所谓,如果需要采集大量数据,手动就显得乏力了。半夜睡不着,爬起来写一段有关游戏商品数据的爬虫通用模板,希望能帮…

Servlet实现一个简单的表白墙网站

文章目录 前言效果展示事前准备HTML、CSS、JavaScript分别负责哪些HTML和CSS构架出页面的基本结构和样式JavaScript 实现行为和交互实现服务器端的业务代码整理pom.xmlweb.xmlmessageWall.htmlMessageServlet.java 前言 前面我们学习了 Java 中知名的 HTTP 服务器 tomcat 的安…

linux下的工具---yum

一、什么是yum yum是Linux下的软件包管理器 二、什么是软件包管理器 1、在Linux下安装软件, 一个通常的办法是下载到程序的源代码, 并进行编译, 得到可执行程序. 2、但是这样太麻烦了, 于是有些人把一些常用的软件提前编译好, 做成软件包(可以理解成windows上的安装程序)放在…

【密码学引论】Hash密码

第六章 Hash密码 md4、md5、sha系列、SM3 定义:将任意长度的消息映射成固定长度消息的函数功能:确保数据的真实性和完整性,主要用于认证和数字签名Hash函数的安全性:单向性、抗若碰撞性、抗强碰撞性生日攻击:对于生日…

保护您的IP地址:预防IP地址盗用的关键措施

随着互联网的发展,IP地址作为标识互联网设备的重要元素,成为网络通信的基石。然而,IP地址盗用威胁正不断增加,可能导致敏感信息泄露、未经授权的访问和网络攻击。本文将介绍一些有效的方法,以帮助组织和个人预防IP地址…

初学vue3与ts:路由跳转带参数

index-router <!-- 路由跳转 --> <template><div><div class"title-sub flex"><div>1、用router-link跳转带参数id1&#xff1a;</div><router-link to"./link?id1"><button>点我跳转</button>&…

scipy 笔记:scipy.spatial.distance

1 pdist 计算n维空间中观测点之间的成对距离。 scipy.spatial.distance.pdist(X, metriceuclidean, *, outNone, **kwargs) 1.1 主要参数 X一个m行n列的数组&#xff0c;表示n维空间中的m个原始观测点metric使用的距离度量out输出数组。如果非空&#xff0c;压缩的距离矩阵…

Mindomo Desktop for Mac免费思维导图软件,助您高效整理思维

思维导图是一种强大的工具&#xff0c;可以帮助我们整理思维、提高记忆力、激发创造力。而Mindomo Desktop for Mac作为一款免费的思维导图软件&#xff0c;能够帮助我们更高效地进行思维整理和项目管理。在本文中&#xff0c;我们将介绍Mindomo Desktop for Mac的功能和优势&a…