【数据结构】八大排序 (三)

目录

前言:

快速排序

快速排序非递归实现

快速排序特性总结

归并排序

归并排序的代码实现

归并排序的特性总结

计数排序

计数排序的代码实现

计数排序的特性总结


前言:

前文快速排序采用了递归实现,而递归会开辟函数栈帧,递归的深度越深,占用栈区的空间就越大,栈区的大小一般是8M,10M,当递归深度足够深时,栈区的空间就会被用完,导致栈溢出,此时需要将递归改为非递归更加稳妥,本篇继续详细解读快排的非递归实现,归并排序,计数排序;

快速排序

快速排序非递归实现

  • 采用递归实现快速排序时,而递归就是不断调用单趟排序函数的功能,若不采用递归,什么可以实现不断调用单趟排序函数的功能?
  • 循环;
  • 循环只要满足循环条件,就会不断调用单趟排序函数的功能,但是每次递归调用时单趟排序函数的参数是变化的,而循环条件确是一成不变的,递归会在栈上建立函数栈帧,而函数栈帧里面存放下次调用该函数的参数,若采用非递归,那我们就必须把每一次循环的参数记录下来,供单趟排序使用,如何解决?
  •  使用顺序栈或者链式栈记录每次函数参数,栈的实现采用动态内存开辟,存储空间是堆区开辟的空间,堆区大小可达2G;

快速排序非递归实现步骤:

  1. 创建一个栈,将整个序列的起始位置和结束位置入栈;
  2. 当栈不为空时,弹出栈顶元素,取出该区间的起始位置 left 和结束位置 right;
  3. 对该区间进行划分,获取划分点 keyi;
  4. 如果keyi左边还有元素,将左半部分的起始位置left和结束位置keyi-1入栈;
  5. 如果keyi右边还有元素,将右半部分的起始位置keyi+1和结束位置right入栈;
  6. 重复步骤2-5,直到栈为空;
  •  栈的特性为后入先出先将待排序序列的右边界 right入栈后将待排序序列的左边界left入栈;出栈时(获取栈顶元素)就可以先取到左边界值left ,后取到右边界值right;

  •  先获取栈顶元素,然后出栈,先取到0给left,后取到7给right,进行单趟排序(hoare版本)

  •  区间被划分为【left,keyi-1】 U keyi U 【keyi+1, right】(left=0, keyi-1=3,keyi+1=5,right=7),为了先处理划分后的左子序列,先将右子区间的边界值right keyi+1分别入栈(先入right,后入keyi+1) ,然后将左子区间的边界值keyi-1,left分别入栈(先入keyi-1,  后入left);

  •  先取栈顶元素,然后出栈,先取到的元素给left ,后取到的元素给right (left=0, right=3), 进行单趟排序(hoare版本);

  •  keyi左边没有元素,keyi右边还有元素,将右半部分的起始位置keyi+1和结束位置right入栈(right先入栈,keyi+1后入栈)

  •   先取栈顶元素,然后出栈,先取到的元素给left ,后取到的元素给right (left=1, right=3), 进行单趟排序(hoare版本);

  •  keyi左边没有元素,keyi右边还有元素,将右半部分的起始位置keyi+1和结束位置right入栈(right先入栈,keyi+1后入栈)

 

  • 左子区间全部被排完,此时才可以取出5和7排右子区间,右子区间按相同流程处理即可;

顺序栈与链式栈的实现:顺序栈与链式栈_顺序栈和链栈-CSDN博客

//快排非递归实现
void QuickSortNonR(int* a, int begin, int end)
{Stack st;InitStack(&st);StackPush(&st, end);StackPush(&st, begin);while (!StackEmpty(&st)){int left = StackTop(&st);StackPop(&st);int right = StackTop(&st);StackPop(&st);int keyi = PartSort(a, left, right);//[left keyi-1] keyi [keyi+1 right]if (right > keyi + 1){StackPush(&st, right);StackPush(&st, keyi+1);}if (keyi - 1 > left){StackPush(&st, keyi - 1);StackPush(&st, left);}}DestroyStack(&st);
}

快速排序特性总结

1. 时间复杂度

因为每次排序都将待排序序列分成两部分,每部分的长度大约为原序列的一半,因此需要进行logn次排序,每次排序的时间复杂度为O(n),所以快速排序的时间复杂度为O(n*logn)

2. 空间复杂度

因为每次排序需要使用递归调用,每次调用需要使用一定的栈空间,所以快速排序的空间复杂度为O(logn)

3. 算法稳定性

快速排序的算法不稳定,这是因为在排序过程中,可能会出现相同元素的相对位置发生变化的情况;当待排序序列中存在多个相同的元素时,快速排序可能会将它们分到不同的子序列中,从而导致它们的相对位置发生变化;

归并排序

归并排序的基本思想:

将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将这些有序的子序列合并成一个大的有序序列;

具体实现过程通常采用递归的方法,将序列递归地分成两半,对每一半分别进行归并排序,最后将两个有序的子序列合并成一个有序的序列;在合并的过程中,需要开辟一个数组来存储合并后的序列,然后再将临时数组中的元素拷贝回原数组中;

归并排序的基本思想可以总结为以下三个步骤:

  1. 分割:将待排序的序列分成若干个子序列,每个子序列都是有序的;
  2. 合并:将有序的子序列归并到开辟后的数组形成一个大的有序序列;
  3. 复制:将临时数组中的元素复制回原数组中;

归并排序的实现步骤:

  1. 分割:将待排序数组从中间位置分成两个子数组,直到每个子数组只有一个元素为止;
  2. 归并:将两个有序子数组合并成一个大的有序数组;
    • 开辟一个新数组,新数组的大小与原数组大小相同,定义三个指针,分别指向两个子数组和新数组;
    • 比较两个子数组的第一个元素,将较小的元素放入新数组中,并将指向该元素的指针向后移动一位;
    • 重复上一步,直到其中一个子数组的元素全部放入新数组中;
    • 将另一个子数组中剩余的元素依次放入新数组中;

归并排序的代码实现

//归并排序(递归)
//将待排序序列不断二分,直到每个子序列只有一个元素为止,只有一个元素,序列一定有序;
//将相邻的两个子序列合并成一个有序的序列,直到所有子序列都被合并成一个完整的序列;
void SubMergeSort(int* a, int* tmp, int begin, int end)
{if (begin >= end)return;int mid = (begin + end) / 2;//划分区间为[begin,mid]U[mid+1,end]int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;//递归终止的条件为区间只包含一个元素或者区间不存在;//后序遍历SubMergeSort(a, tmp, begin1, end1);SubMergeSort(a, tmp, begin2, end2);
//首先归并到tmp数组,然后拷贝到原数组;int index = begin;//tmp数组下标while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[index++] = a[begin1++];}else{tmp[index++] = a[begin2++];}}//begin1>end1与begin2>end2至少有一个发生while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}//拷贝到原数组memcpy(a + begin, tmp + begin, (end - begin + 1)*sizeof(int));
}
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int)*n);if (tmp == NULL){perror("malloc failed");return;}SubMergeSort(a, tmp, 0, n - 1);
}

归并排序的特性总结

1. 时间复杂度

归并排序的时间复杂度可以通过递归树来分析;在递归树中,每个节点表示对一个区间进行排序的时间复杂度,而每个节点的子节点表示对该区间的两个子区间进行排序的时间复杂度,因此,递归树的深度为logn,每层的时间复杂度为O(n),因此归并排序的时间复杂度为O(nlogn)

2. 空间复杂度

归并排序的空间复杂度为O(n),因为在排序过程中需要创建一个长度为n的临时数组来存储排序结果;

3. 算法稳定性

归并排序是一种稳定的排序算法,因为在合并两个有序子序列的过程中,如果两个元素相等,那么先出现的元素会先被放入结果数组中,保证了排序的稳定性;

计数排序

计数排序的基本思想:

计数排序不是一个基于比较的排序算法,是记录数据出现次数的一种排序算法;计数排序使用一个额外的count数组,其中第i个元素是待排序数组中值等于i的元素的个数,然后根据count数组来将待排序数组中的元素排到正确的位置;

计数排序的实现步骤:

  1. 遍历原数组,找出原数组中的最大值max,最小值min;
  2. 创建count数组,数组大小为max-min+1,并将其元素初始化为0;
  3. 将原数组里面的值减去原数组最小值min作为count数组的下标映射下来,而count数组里面存放的值就是原数组里面值出现的次数;
  4. 从前向后依次填充数组,填充数组时,只需要加上这个最小值,就能还原出原来的值;

计数排序的代码实现

//计数排序
void CountSort(int* a, int n)
{//寻找最大值,最小值int min = a[0];int max = a[0];for (int i = 0; i < n; i++){if (a[i] < min)min = a[i];if (a[i]>max)max = a[i];}//确定新数组count的大小int range = max - min + 1;int* count = (int*)malloc(sizeof(int)*range);if (count == NULL){perror("malloc failed:");return;}//新数组全部初始化为0,方便计数memset(count, 0, sizeof(int)*range);//统计数据出现的次数for (int i = 0; i < n; i++){count[a[i] - min]++;}//从前向后依次填充原数组int j = 0;for (int i = 0; i < range; i++){while (count[i]--){a[j++] = i + min;}}free(count);
}

计数排序的特性总结

1. 时间复杂度

计数排序的时间复杂度与待排序元素的范围相关,其时间复杂度为O(n+k),其中n为元素数量,k为元素的范围(即最大的元素与最小的元素的差加1);

2. 空间复杂度

计数排序需要额外开辟的空间大小k=max+min-1,所以空间复杂度为O(k)

3. 算法稳定性

计数排序是一个非基于比较的线性时间排序算法,是一种稳定排序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/205577.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谨慎Apache-Zookeeper-3.5.5以后在CentOS7.X安装的坑

目录 前言 一、现场还原 二、问题诊断 三、问题原因 总结 前言 最近由于项目需要&#xff0c;在服务器上需要搭建Hbase完全分布式集群环境。开发环境&#xff0c;采用的是最小节点的方式进行搭建&#xff08;即3个节点的模式&#xff09;。资源环境列表如下&#xff1a; 序号…

[Docker]十二.Docker consul集群搭建、微服务部署,Consul集群+Swarm集群部署微服务实战

一.Docker consul集群搭建 Consul 是 Go 语言写的开源的服务发现软件&#xff0c; Consul 具有 服务发现、健康检查、 服务治理、微服务熔断处理 等功能,在微服务中讲过如何搭建consul集群&#xff0c;接下来看看在 Dokcer 中如何去创建搭建consul 集群 1.linux上面部署consul集…

kafka C++实现生产者

文章目录 1 Kafka 生产者的逻辑2 Kafka 的C API2.1 RdKafka::Conf2.2 RdKafka::Message2.3 RdKafka::DeliveryReportCb2.4 RdKafka::Event2.5 RdKafka::EventCb2.6 RdKafka::PartitionerCb2.7 RdKafka::Topic2.8 RdKafka::Producer&#xff08;核心&#xff09; 3 Kafka 生产者…

系列十八、Spring bean线程安全问题

一、概述 我们知道Spring中的bean&#xff0c;默认情况下是单例的&#xff0c;那么Spring中的bean是线程安全的吗&#xff1f;这个需要分情况考虑&#xff0c;bean中是否存在成员变量&#xff1f;bean中的成员变量是怎么处理的&#xff1f;...&#xff0c;针对bean的状态会有不…

商品橱窗和抖音小店有什么区别?新手应该选择哪一个?

我是电商珠珠 在抖音小店内&#xff0c;有两种经营方式&#xff0c;一种是商品橱窗&#xff0c;还有一种是抖音小店。 很多人会将他们混之一谈&#xff0c;说开抖店需要粉丝&#xff0c;商品橱窗不用。 事实真的是这样吗&#xff1f; 接下来&#xff0c;我就来给大家讲讲二…

优化机器学习:解析数据归一化的重要性与应用

在机器学习中&#xff0c;数据归一化是一种数据预处理的技术&#xff0c;旨在将数据转换为相似的范围或标准化的分布。这样做的主要目的是消除不同特征之间的量纲差异或数值范围差异&#xff0c;以确保模型在训练时更稳定、更有效地学习特征之间的关系。 通常&#xff0c;机器…

【数据挖掘】国科大刘莹老师数据挖掘课程作业 —— 第三次作业

Written Part 1. 基于表 1 1 1 回答下列问题&#xff08;min_sup40%, min_conf75%&#xff09;&#xff1a; Transaction IDItems Bought0001{a, d, e}0024{a, b, c, e}0012{a, b, d, e}0031{a, c, d, e}0015{b, c, e}0022{b, d, e}0029{c, d}0040{a, b, c}0033{a, d, e}0038…

Django报错:RuntimeError at /home/ 解决办法

错误提示&#xff1a; RuntimeError at /home/ Model class django.contrib.contenttypes.models.ContentType doesnt declare an explicit app_label and isnt in an application in INSTALLED_APPS. 原因剖析&#xff1a; 博主在使用pycharm创建Django项目的时候&#xff0…

Jmeter和Testlink自动化测试框架研究与实施

摘 要 目前基于Jmeter的接口自动化测试框架&#xff0c;大多只实现脚本维护和自动调度&#xff0c;无法与Testlink进行互通&#xff0c;实现测试方案与自动化实施流程连接&#xff0c;本文基于Testlink、Jmeter、Jenkins实现&#xff1a;通过Testlink统一维护接口自动化测试用…

渲染到纹理:原理及WebGL实现

这篇文章是WebGL系列的延续。 第一个是从基础知识开始的&#xff0c;上一个是向纹理提供数据。 如果你还没有阅读过这些内容&#xff0c;请先查看它们。 NSDT在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - …

webpack external 详解

作用&#xff1a;打包时将依赖独立出来&#xff0c;在运行时&#xff08;runtime&#xff09;再从外部获取这些扩展依赖&#xff0c;目的时解决打包文件过大的问题。 使用方法&#xff1a; 附上代码块 config.set(externals, {vue: Vue,vue-router: VueRouter,axios: axios,an…

Spark on yarn 模式的安装与部署

任务描述 本关任务&#xff1a; Spark on YARN 模式的安装与部署。 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a; Spark 部署模式的种类&#xff1b;Spark on YARN 模式的安装。 Spark 部署模式 Spark 部署模式主要分为以下几种&#xff0c;Spark Stand…

Compose入门

​ 本篇文章主要是为了对Compose有一个初步了解。知道Compose是做什么的&#xff0c;用Compose能干什么&#xff0c;在目前的各种UI框架下面有些优势&#xff0c;参考Google官网的解释加上一些自己的理解生成的一篇文章。本人也是Compose初学者&#xff0c;通过每一步学习遇到哪…

系统频繁崩溃,如何考虑系统的稳定性和可扩展性?

最近网传互联网应用信息系统频繁崩溃&#xff0c;语雀崩完淘宝崩&#xff0c;淘宝崩完滴滴崩&#xff0c;随着业务的发展和技术的进步&#xff0c;对于信息系统的要求也越来越高。信息应用系统为了满足不断增长的用户和业务需求&#xff0c;提高系统的稳定性和扩展性至关重要。…

网络入门---网络的大致了解

目录标题 网络发展的简单认识协议作用的理解协议的本质什么是协议分层网络通信所面对的问题OSI七层模型TCP/IP模型协议报头的理解局域网通信局域网通信基本原理报头的问题局域网的特点跨网的网络链接如何查看mac地址 网络发展的简单认识 通过之前的学习我们知道计算机是给人提…

【深度学习】基于深度学习的超分辨率图像技术一览

超分辨率(Super-Resolution)即通过硬件或软件的方法提高原有图像的分辨率&#xff0c;图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题&#xff0c;在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。 SR取得了显著进步。一般可以将现有…

创建Asp.net MVC项目实现视图页面数据传值显示

MVC中视图传值 ViewData ViewBag TempData 举例创建三中传值方式实现页面数据展示 MVC中视图传值 Asp.net MVC中Controller向View传值有多种方式,这里简单说一下其中3种方式 ViewData、ViewBag和TempData ViewData ViewData存储数据&#xff0c;ViewData的声明和赋值方…

扫地机器人市场持续火爆,景联文科技数据采集标注方案助力扫地机器人智能化升级

随着消费者对智能家居和清洁卫生的需求增加&#xff0c;扫地机器人市场规模不断扩大。市场竞争也日益激烈&#xff0c;各品牌都在努力提升产品性能和服务质量&#xff0c;以获取更大的市场份额。 IDC的统计数据显示&#xff0c;今年双十一前两周&#xff08;2023年10月23日至20…

滴滴打车崩了!全过程

滴滴发布致歉10元补偿券&#xff0c;文末可领取 。 事情发生于 2023年11月27日晚~28日中午&#xff0c;滴滴打车服务出现大面积故障&#xff0c;登上微博热搜。 许多用户在使用滴滴出行时遇到了无法叫车、订单异常等问题&#xff0c;导致大量用户滞留在外&#xff0c;出行受阻…

吃火锅(Python)

题目描述 吃火锅 以上图片来自微信朋友圈&#xff1a;这种天气你有什么破事打电话给我基本没用。但是如果你说“吃火锅”&#xff0c;那就厉害了&#xff0c;我们的故事就开始了。 本题要求你实现一个程序&#xff0c;自动检查你朋友给你发来的信息里有没有 chi1 huo3 guo1。…