EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.【EI级】Matlab实现TCN-BiLSTM-Multihead-Attention时间卷积双向长短期记忆神经网络融合多头注意力机制多变量时间序列预测;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.运行环境为Matlab2023a及以上;
3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测获取。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  相关指标计算
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MAPE
maep1 = sum(abs(T_sim1 - T_train)./T_train) ./ M ;
maep2 = sum(abs(T_sim2 - T_test )./T_test) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MAPE为:', num2str(maep1)])
disp(['测试集数据的MAPE为:', num2str(maep2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  RMSE
RMSE1 = sqrt(sumsqr(T_sim1 - T_train)/M);
RMSE2 = sqrt(sumsqr(T_sim2 - T_test)/N);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的RMSE为:', num2str(RMSE1)])
disp(['测试集数据的RMSE为:', num2str(RMSE2)])

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/206776.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis性能压测、监控工具及优化方案

Redis是一款高性能的开源缓存数据库,但是在实际应用中,我们需要对Redis进行性能压测、监控以及优化,以确保其稳定性和高可用性。本文将介绍Redis性能压测、监控工具及优化方案。 01 Redis性能压测 常用的Redis性能压测工具有: …

Redis-Day1基础篇(初识Redis, Redis常见命令, Redis的Java客户端)

Redis-Day1基础篇 初识Redis认识NoSQL认识Redis安装Redis启动RedisRedis客户端 Redis命令数据结构介绍通用命令操作命令StringHashListSetSortedSet Redis的Java客户端客户端对比Jedis客户端Jedis快速入门Jedis连接池 SpringDataRedis客户端SpringDataRedis概述SpringDataRedis…

MySQL进阶知识:锁

目录 前言 全局锁 表级锁 表锁 元数据锁(MDL) 意向锁 行级锁 行锁 行锁演示 间隙锁/临界锁 演示 前言 MySQL中的锁,按照锁的粒度分,分为以下三类 全局锁:锁定数据库中的所有表。表级锁:每次操…

File类

File 概述 File: 路径 IO流: 传输 路径 相对路径, 绝对路径 File File对象就表示一个路径,可以是文件的路径、也可以是文件夹的路径这个路径可以是存在的,也允许是不存在的 构造方法 代码示例: package FileTest1;import java.io.File;public c…

【追求卓越11】算法--二叉树

引导 接下来的几节我们开始介绍非线性的数据结构--树。树的内容比较多也比较复杂。本节,我们只需要了解关于树的一些基本概念。以及再进一步了解树的相关内容--搜索二叉树。该类型二叉树在工作中,是我们常接触的。该节我们介绍关于搜索二叉树的相关操作&…

每日一题(LeetCode)----链表--链表最大孪生和

每日一题(LeetCode)----链表–链表最大孪生和 1.题目&#xff08;2130. 链表最大孪生和&#xff09; 在一个大小为 n 且 n 为 偶数 的链表中&#xff0c;对于 0 < i < (n / 2) - 1 的 i &#xff0c;第 i 个节点&#xff08;下标从 0 开始&#xff09;的孪生节点为第 (n…

广州华锐视点:基于VR元宇宙技术开展法律法规常识在线教学,打破地域和时间限制

随着科技的飞速发展&#xff0c;人类社会正逐渐迈向一个全新的时代——元宇宙。元宇宙是一个虚拟的、数字化的世界&#xff0c;它将现实世界与数字世界紧密相连&#xff0c;为人们提供了一个全新的交流、学习和娱乐平台。在这个充满无限可能的元宇宙中&#xff0c;法律知识同样…

【web】Fastapi自动生成接口文档(Swagger、ReDoc )

简介 FastAPI是流行的Python web框架&#xff0c;适用于开发高吞吐量API和微服务&#xff08;直接支持异步编程&#xff09; FastAPI的优势之一&#xff1a;通过提供高级抽象和自动数据模型转换&#xff0c;简化请求数据的处理&#xff08;用户不需要手动处理原始请求数据&am…

[vue3] 使用 vite 创建vue3项目的详细流程

一、vite介绍 Vite&#xff08;法语意为 “快速的”&#xff0c;发音 /vit/&#xff0c;发音同 “veet”) 是一种新型前端构建工具&#xff0c;能够显著提升前端开发体验&#xff08;热更新、打包构建速度更快&#xff09;。 二、使用vite构建项目 【学习指南】学习新技能最…

VM CentOS7安装ffmpeg

项目中涉及给视频添加水印&#xff0c;使用到了ffmpeg&#xff0c;windows系统可直接使用&#xff0c;Linux需要手动编译完成ffmpeg后才可正常使用。 配置yum源: 备份原repo文件 cd /etc/yum.repos.d/mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.r…

详细解答T-SNE程序中from sklearn.manifold import TSNE的数据设置,包括输入数据,绘制颜色的参数设置,代码复制可用!!

文章目录 前言——TSNE是t-Distributed Stochastic Neighbor Embedding的缩写1、可运行的T-SNE程序2. 实验结果3、针对上述程序我们详细分析T-SNE的使用方法3.1 加载数据3.2 TSNE降维3.3 绘制点3.4 关于颜色设置&#xff0c;颜色使用的标签数据的说明cy 总结 前言——TSNE是t-D…

electron windows robotjs 安装教程

Robotjs 安装 前言第一步 : 安装python第二步 : 安装Visual Studio 2022第三步 : 安装robotjs 前言 robotjs可以控制鼠标键盘&#xff0c;获取屏幕内容&#xff0c;配合electron可做很多自动化操作。windows下配置环境有很多坑&#xff0c;很多文章都太旧了。试了很多次发现了…

【Java程序员面试专栏 专业技能篇】Java SE核心面试指引(三):核心机制策略

关于Java SE部分的核心知识进行一网打尽,包括四部分:基础知识考察、面向对象思想、核心机制策略、Java新特性,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 本篇Blog为第三部分:核心机制策略,子节点表示追问或同级提问 异常处理 …

软考:2024年软考高级:软件工程

软考&#xff1a;2024年软考高级: 提示&#xff1a;系列被面试官问的问题&#xff0c;我自己当时不会&#xff0c;所以下来自己复盘一下&#xff0c;认真学习和总结&#xff0c;以应对未来更多的可能性 关于互联网大厂的笔试面试&#xff0c;都是需要细心准备的 &#xff08;1…

docker compose搭建渗透测试vulstudy靶场示例

前言 渗透测试&#xff08;Penetration test&#xff09;即网络安全工程师/安全测试工程师/渗透测试工程师通过模拟黑客&#xff0c;在合法授权范围内&#xff0c;通过信息搜集、漏洞挖掘、权限提升等行为&#xff0c;对目标对象进行安全测试&#xff08;或攻击&#xff09;&am…

用Python写一个浏览器集群框架

更多Python学习内容&#xff1a;ipengtao.com 在分布式爬虫和大规模数据采集的场景中&#xff0c;使用浏览器集群是一种有效的方式&#xff0c;可以提高数据采集的速度和效率。本文将介绍如何用Python编写一个简单但强大的浏览器集群框架&#xff0c;以应对需要使用多个浏览器实…

5. 文件属性和目录

5. 文件属性和目录 1. Linux 系统的文件类型1.1 普通文件1.2 目录文件1.3 字符设备文件和块设备文件1.4 符号链接文件1.5 管道文件1.6 套接字文件 2. stat 系统调用2.1 struct stat 结构体2.2 st_mode 变量2.3 struct timespec 结构体 3. fstat 和 lstat 函数3.1 fstat 函数3.2…

机器学习---最大似然估计和贝叶斯参数估计

1. 估计 贝叶斯框架下的数据收集&#xff0c;在以下条件下我们可以设计一个可选择的分类器 : P(wi) (先验)&#xff1b;P(x | wi) (类条件密度) 但是。我们很少能够完整的得到这些信息! 从一个传统的样本中设计一个分类器&#xff1a; ①先验估计不成问题 ②对类条件密度…

Rust的Vec优化

本篇是对Rust编程语言17_Rust的Vec优化[1]学习与记录 MiniVec https://crates.io/crates/minivec enum DataWithVec { // tag,uint64,8字节 I32(i32), // 4字节,但需内存对齐到8字节? F64(f64), // 8字节 Bytes(Vec<u8>), // 24字节}fn main()…

Centos Bind安装与排错

1.配置Centos系统静态IP vi/etc/sysconfig/network-scripts/ifcfg-ens33BOOTPROTOstaticIPADDR192.168.1.100NETMASK255.255.255.0GATEWAY192.168.1.1DNS18.8.8.8:wqsudo systemctl restart network.service 2.安装BIND&#xff08;需要服务器连接互联网&#xff0c;如果服务…