智能优化算法应用:基于风驱动算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于风驱动算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于风驱动算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.风驱动算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用风驱动算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.风驱动算法

风驱动算法原理请参考:https://blog.csdn.net/u011835903/article/details/108676626
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

风驱动算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明风驱动算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/207048.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3实现element table缓存滚动条

背景 对于后台管理系统,数据的展示形式大多都是通过表格,常常会出现的一种场景,从表格跳到二级页面,再返回上一页时,需要缓存当前的页码和滚动条的位置,以为使用keep-alive就能实现这两种诉求,…

threeJs引入模型使用3D模型(vite+React+Ts)

要在 Three.js 中使用 3D 模型,你需要加载模型文件并将其添加到场景中。Three.js 支持多种不同的模型格式,比如 OBJ、FBX、GLTF 等。 init vitelatest //创建一个vite的脚手架 选择react并配置Ts 安装three.js准备 npm install react-three/drei np…

阿里云新版公共实例从注册账号到创建设备生成参数教程

1 注册阿里云 打开阿里云官网,点击右上角的登录/注册 打开的界面按照图片输入手机号注册 注册成功后,登录返回第一次打开的界面,点击控制台 点击控制台后界面如下 点击左上角的菜单,弹出新窗口,搜索物联网平台 开通物…

Wireshark之Intro, HTTP, DNS

源码地址👇 moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES: 《计算机网络-自顶向下方法(原书第6版)》编程作业,Wireshark实验文档的翻译和解答。 (github.com) 目录 🌼Introduce 🎧前置 🎧过…

MySQL之 InnoDB逻辑存储结构

InnoDB逻辑存储结构 InnoDB将所有数据都存放在表空间中,表空间又由段(segment)、区(extent)、页(page)组成。InnoDB存储引擎的逻辑存储结构大致如下图。下面我们就一个个来看看。 页&#xff08…

数据结构-二叉树(1)

1.树概念及结构 1.1树的概念 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 1.有一个特殊的结点&…

Electronica慕尼黑电子展 Samtec团队与21ic分享虎家产品与方案

【摘要/前言】 “希望但凡是能够使用到连接器的场合都有Samtec的身影” 在慕尼黑上海电子展现场,Samtec华东区销售经理章桢彦先生在与21ic副主编刘岩轩老师的采访中,如是说道。这是一种愿景,更是Samtec的努力方向。短短一句话,…

自定义 element DatePicker组件指令 使选择器呈现为只读状态,用户无法直接编辑,但可以查看和选择日期

1.问题 现实中遇到列表的搜索条件使用DatePicker 组件进行开始结束时间筛选,但是手动修改input中的值,导致请求参数异常。比如讲clearable设置为false之后还是能手动清空输入框中的值。虽然组件提供了readonly 属性,但是也会让日期选择也无法…

详解Java中的泛型(泛型的语法,擦除机制,泛型的上界)

目录 一.什么是泛型 二.Java中为什么要使用泛型 三.泛型的语法 四.泛型类的使用 五.泛型的编译机制(擦除机制) 六.泛型的上界 一.什么是泛型 泛型(Generics)是Java SE 5中引入的一个新特性,可以使Java中的类和方…

Unity安装

DAY1 下载Unity 打开Unity3D官网,下载Unity Hub,管理Unity的软件。链接https://unity.cn/releases (可能需要注册账号,就正常注册登录即可) 如果是新版的hub,可能长下面这个样子,还是英文的,点击圆圈的设…

maven 将Jar包安装到本地仓库

window系统: 注意事项:在windows中,使用mvn指令将jar安装到本地仓库时,一定要将相关资源使用“"”包裹上,不然会报下面的错: mvn install:install-file "-DfileD:\BaiduNetdiskDownload\qianzixi…

内网穿透的应用-Jupyter Notbook+cpolar内网穿透实现公共互联网访问使用数据分析工作

文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下载安装2.2 Jupyter Notebook的配置2.3 Cpolar下载安装 3.Cpolar端口设置3.1 Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 在数据分析工作中,使用最多的无疑就是各种函数、图表、…

[C++]六大默认成员函数详解

☃️个人主页:fighting小泽 🌸作者简介:目前正在学习C和Linux 🌼博客专栏:C入门 🏵️欢迎关注:评论👊🏻点赞👍🏻留言💪🏻 …

Java项目学生管理系统二查询所有

学生管理 近年来,Java作为一门广泛应用于后端开发的编程语言,具备了广泛的应用领域和丰富的开发资源。在前几天的博客中,我们探讨了如何搭建前后端环境,为接下来的开发工作打下了坚实的基础。今天,我们将进一步扩展我…

Git分支批量清理利器:自定义命令行插件实战

说在前面 不知道大家平时工作的时候会不会需要经常新建git分支来开发新需求呢?在我这边工作的时候,需求都是以issue的形式来进行开发,每个issue新建一个关联的分支来进行开发,这样可以通过issue看到一个需求完整的开发记录&#x…

C语言练习记录(蓝桥杯练习)(小蓝数点)

目录 小蓝数点 第一题程序的输出结果是?: 第二题下面代码的执行结果是什么?: 第三题下面代码的执行结果是什么?: 第四题关于关系操作符说法错误的是?: 第五题对于下面代码段,y的值为? 第六题sum 21 …

python——第十五天

面向对象和面向对象编程 面向对象编程: C语言是一门面向过程的编程语言!!! 面向对象的编程思想 就是分门别类的一种能力 面向对象的概念 类: 对一类事物的统称 对象: 一类事物中的具体案例 面向对象的…

ArkTS-自定义弹窗

自定义弹窗 通过CustomDialogController类显示自定义弹窗。使用弹窗组件时,可优先考虑自定义弹窗,便于自定义弹窗的样式与内容。 CustomDialogController仅在作为CustomDialog和Component struct的成员变量,且在Component struct内部定义时赋…

Java中的JMX的使用

文章目录 1. 定义和存在的意义2. 架构2.1 Instrumentation2.2 JMX Agent2.3 Remote Management 3. 启动和连接3.1 注册MBean3.2 有两个方式启动JMX Agent3.3 Remote Management(客户端) 4. MBeanServerConnection使用4.1 列出所有的MBean4.2 列出所有的Domain4.3 MBean计数4.4 …

开源vs闭源,处在大模型洪流中,向何处去?

文章目录 一、开源和闭源的优劣势比较1.1 开源优势1.2 闭源的优势 二、开源和闭源对大模型技术发展的影响2.1 数据共享2.2 算法创新2.3 业务拓展2.4 安全性和隐私2.5 社会责任和伦理 三、开源与闭源的商业模式比较3.1 盈利模式3.2 市场竞争3.3 用户生态3.4 创新速度 四&#xf…