【ChatGLM3-6B】Docker下部署及微调

【ChatGLM2-6B】小白入门及Docker下部署

  • 注意:Docker基于镜像中网盘上上传的有已经做好的镜像,想要便捷使用的可以直接从Docker基于镜像安装看
  • Docker从0安装
    • 前提
    • 下载
    • 启动
    • 访问
  • Docker基于镜像安装
    • 容器打包操作(生成镜像时使用的命令)
    • 安装时命令
  • 微调
    • 前提
    • 微调和验证文件准备
    • 微调和验证文件格式转换
    • 修改微调脚本
    • 执行微调
    • 微调完成
    • 结果推理验证
    • 报错解决
      • 出现了$‘\r’: command not found错误
  • 加载微调模型
  • API接口调用

注意:Docker基于镜像中网盘上上传的有已经做好的镜像,想要便捷使用的可以直接从Docker基于镜像安装看

Docker从0安装

前提

  • 安装好了docker
  • 安装好了NVIDIA
  • 显卡16G

下载

  • 新建一个文件夹,用来存放下载下来的ChatGLM3代码和模型

  • 右键,打开一个git窗口,拉取模型(会很慢,耐心等待)

    • 地址: https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary
    git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
    

    在这里插入图片描述

  • 右键,打开一个git窗口,拉取源代码

    • 地址:https://github.com/THUDM/ChatGLM3
    git clone https://github.com/THUDM/ChatGLM3
    

    git clone https://ghproxy.com/https://github.com/THUDM/ChatGLM3
    

在这里插入图片描述

  • 注意:将下载好的模型(chatglm3-6b-models)和代码放到一个目录里面,并上传到服务器上

启动

docker run -itd --name chatglm3 -v `pwd`/ChatGLM3:/data \
--gpus=all -e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e NVIDIA_VISIBLE_DEVICES=all \
-p 8501:8501 pytorch/pytorch:2.0.1-cuda11.7-cudnn8-devel
# 进入启动好的容器
docker exec -it chatglm3 bash# 设置pip3下载路径为国内镜像
cd /data
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple 
pip3 config set install.trusted-host mirrors.aliyun.com# 安装基础依赖
pip3  install -r requirements.txt

修改模型路径
在这里插入图片描述

启动

streamlit run basic_demo/web_demo2.py

在这里插入图片描述

访问

http://10.22.2.18:8501/

在这里插入图片描述

Docker基于镜像安装

容器打包操作(生成镜像时使用的命令)

  • 将安装好、启动好的容器打包成镜像

    docker commit -m='glm3 commit' -a='zhangzh' chatglm3 chatglm3-6b:1.1
    
  • 将镜像,打成可以传到其他地方的tar包

    docker save -o chatglm3-6b.tar chatglm3-6b:1.1
    

安装时命令

  • 网盘地址

    ​ 这里因为网盘上传文件有大小限制,所以使用了分卷压缩的方式进行了上传,全部下载下来就可以。

    链接:https://pan.baidu.com/s/1wY3QqaWrMyBR39d2ZhN_Kg?pwd=9zdd 
    提取码:9zdd
    

    在这里插入图片描述

  • 将下载好的镜像文件和代码模型文件上传到服务器上,并进行解压,然后在该目录进行操作。

  • 在其他的docker服务器加载镜像

    docker load -i chatglm3-6b.tar
    
  • 启动

    docker run -itd --name chatglm3 -v `pwd`/ChatGLM3:/data \
    --gpus=all -e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e NVIDIA_VISIBLE_DEVICES=all \
    -p 8501:8501 -p 8000:8000 chatglm3-6b:1.1
    
  • 进入容器

    docker exec -it chatglm3 bash
    
  • 启动

    cd /data 
    streamlit run basic_demo/web_demo2.py
    
  • 访问:http://10.22.2.18:8501/

微调

微调操作直接在docker内进行

 docker exec -it chatglm3 bash

前提

运行示例需要 python>=3.9,除基础的 torch 依赖外,示例代码运行还需要依赖

pip install transformers==4.30.2 accelerate sentencepiece astunparse deepspeed

微调和验证文件准备

微调参数文件为.json文件,先将你的微调数据和验证数据处理成如下格式:

{"content": "类型#裤*版型#宽松*风格#性感*图案#线条*裤型#阔腿裤", "summary": "宽松的阔腿裤这两年真的吸粉不少,明星时尚达人的心头爱。毕竟好穿时尚,谁都能穿出腿长2米的效果宽松的裤腿,当然是遮肉小能手啊。上身随性自然不拘束,面料亲肤舒适贴身体验感棒棒哒。系带部分增加设计看点,还让单品的设计感更强。腿部线条若隐若现的,性感撩人。颜色敲温柔的,与裤子本身所呈现的风格有点反差萌。"}
{"content": "类型#裙*风格#简约*图案#条纹*图案#线条*图案#撞色*裙型#鱼尾裙*裙袖长#无袖", "summary": "圆形领口修饰脖颈线条,适合各种脸型,耐看有气质。无袖设计,尤显清凉,简约横条纹装饰,使得整身人鱼造型更为生动立体。加之撞色的鱼尾下摆,深邃富有诗意。收腰包臀,修饰女性身体曲线,结合别出心裁的鱼尾裙摆设计,勾勒出自然流畅的身体轮廓,展现了婀娜多姿的迷人姿态。"}
{"content": "类型#上衣*版型#宽松*颜色#粉红色*图案#字母*图案#文字*图案#线条*衣样式#卫衣*衣款式#不规则", "summary": "宽松的卫衣版型包裹着整个身材,宽大的衣身与身材形成鲜明的对比描绘出纤瘦的身形。下摆与袖口的不规则剪裁设计,彰显出时尚前卫的形态。被剪裁过的样式呈现出布条状自然地垂坠下来,别具有一番设计感。线条分明的字母样式有着花式的外观,棱角分明加上具有少女元气的枣红色十分有年轻活力感。粉红色的衣身把肌肤衬托得很白嫩又健康。"}
{"content": "类型#裙*版型#宽松*材质#雪纺*风格#清新*裙型#a字*裙长#连衣裙", "summary": "踩着轻盈的步伐享受在午后的和煦风中,让放松与惬意感为你免去一身的压力与束缚,仿佛要将灵魂也寄托在随风摇曳的雪纺连衣裙上,吐露出<UNK>微妙而又浪漫的清新之意。宽松的a字版型除了能够带来足够的空间,也能以上窄下宽的方式强化立体层次,携带出自然优雅的曼妙体验。"}

其中content是向模型输入的内容,summary为模型应该输出的内容。

其中微调数据是通过本批数据对模型进行调试(文件是train.json),验证数据是通过这些数据验证调试的结果(文件是dev.json)。

微调和验证文件格式转换

1、在项目代码的finetune_demo目录下新建一个AdvertiseGen目录,并将你的文件上传上去。

在这里插入图片描述

2、然后回到finetune_demo目录,执行以下脚本进行转换,转换后的文件放在formatted_data目录下。

python ./scripts/format_advertise_gen.py --path "AdvertiseGen/train.json"

在这里插入图片描述

修改微调脚本

本方法使用的微调脚本是finetune_demo/scripts/finetune_pt.sh,修改各个参数为自己的环境,其中:

PRE_SEQ_LEN: 模型长度,后续使用微调结果加载时要保持一直
MAX_SOURCE_LEN:模型输入文本的长度,超过该长度会截取,会影响占用GPU,我这里GPU为16G基本吃满
MAX_TARGET_LEN:模型输出文本的最大长度,会影响占用GPU,我这里GPU为16G基本吃满
BASE_MODEL_PATH:原模型的地址
DATASET_PATH:模型微调参数文件的地址
OUTPUT_DIR:模型微调结果存放的地址
MAX_STEP:调试的步数,主要跟微调需要的时间有关,越小则时间越短,但微调的准确度(影响度)越小
SAVE_INTERVAL:多少步保存一个微调结果

在这里插入图片描述

脚本如下:

#! /usr/bin/env bashset -exPRE_SEQ_LEN=128
LR=2e-2
NUM_GPUS=1
MAX_SOURCE_LEN=512
MAX_TARGET_LEN=64
DEV_BATCH_SIZE=1
GRAD_ACCUMULARION_STEPS=32
MAX_STEP=1500
SAVE_INTERVAL=500DATESTR=`date +%Y%m%d-%H%M%S`
RUN_NAME=advertise_gen_ptBASE_MODEL_PATH=/data/chatglm3-6b-models
DATASET_PATH=formatted_data/advertise_gen.jsonl
OUTPUT_DIR=output/${RUN_NAME}-${DATESTR}-${PRE_SEQ_LEN}-${LR}mkdir -p $OUTPUT_DIRtorchrun --standalone --nnodes=1 --nproc_per_node=$NUM_GPUS finetune.py \--train_format input-output \--train_file $DATASET_PATH \--preprocessing_num_workers 1 \--model_name_or_path $BASE_MODEL_PATH \--output_dir $OUTPUT_DIR \--max_source_length $MAX_SOURCE_LEN \--max_target_length $MAX_TARGET_LEN \--per_device_train_batch_size $DEV_BATCH_SIZE \--gradient_accumulation_steps $GRAD_ACCUMULARION_STEPS \--max_steps $MAX_STEP \--logging_steps 1 \--save_steps $SAVE_INTERVAL \--learning_rate $LR \--pre_seq_len $PRE_SEQ_LEN 2>&1 | tee ${OUTPUT_DIR}/train.log

执行微调

先给脚本执行权限

chmod -R 777 ./scripts/finetune_pt.sh

执行脚本

./scripts/finetune_ds.sh  # 全量微调
./scripts/finetune_pt.sh  # P-Tuning v2 微调

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

微调完成

在这里插入图片描述

结果推理验证

python inference.py \--pt-checkpoint "/data/finetune_demo/output/advertise_gen_pt-20231123-022517-128-2e-2/checkpoint-1500" \--model /data/chatglm3-6b-models

报错解决

出现了$‘\r’: command not found错误

可能因为该Shell脚本是在Windows系统编写时,每行结尾是\r\n
而在Linux系统中行每行结尾是\n
在Linux系统中运行脚本时,会认为\r是一个字符,导致运行错误

使用dos2unix 转换一下就可以了

dos2unix <文件名># dos2unix: converting file one-more.sh to Unix format ...

-bash: dos2unix: command not found

就是还没安装,安装一下就可以了

apt install dos2unix

加载微调模型

cd ../composite_demo
MODEL_PATH="/data/chatglm3-6b-models" PT_PATH="/data/finetune_demo/output/advertise_gen_pt-20231123-022517-128-2e-2/checkpoint-1500" streamlit run main.py

重新访问页面,即可啦~

API接口调用

  • 下载依赖

    pip install openai==1.3.0
    pip install pydantic==2.5.1
    
  • 进入openai_api_demo目录

  • 修改脚本

在这里插入图片描述

  • 启动脚本

    python openai_api_wt.py
    
  • 访问SwaggerUI地址

    http://10.22.2.18:8000/docs#/default/list_models_v1_models_get

    接口:http://10.22.2.18:8000/v1/chat/completions

    参数:

    {"model": "chatglm3-6b","messages": [{"role": "user","content": "你好,给我讲一个故事,大概100字"  # 这里是请求的参数}],"stream": false,"max_tokens": 100,"temperature": 0.8,"top_p": 0.8
    }
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/207566.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++11线程以及线程同步

C11中提供的线程类std::thread,基于此类创建一个新的线程相对简单&#xff0c;只需要提供线程函数和线程对象即可 一.命名空间 this_thread C11 添加一个关于线程的命名空间std::this_pthread ,此命名空间中提供四个公共的成员函数&#xff1b; 1.1 get_id() 调用命名空间s…

电商营销场景的RocketMQ实战01-RocketMQ原理

架构图 Broker主从架构与集群模式 RocketMQ原理深入剖析 Broker主从架构原理 HAConnection与HAClient Broker基于raft协议的主从架构 Consumer运行原理 基础知识 001_RocketMQ架构设计与运行流程分析 RocketMQ这一块&#xff0c;非常关键的一个重要的技术&#xff0c;面试的时候…

键盘打字盲打练习系列之指法练习——2

一.欢迎来到我的酒馆 盲打&#xff0c;指法练习&#xff01; 目录 一.欢迎来到我的酒馆二.开始练习 二.开始练习 前面一个章节简单地介绍了基准键位、字母键位和数字符号键位指法&#xff0c;在这个章节详细介绍指法。有了前面的章节的基础练习&#xff0c;相信大家对盲打也有了…

设计模式-结构型模式之适配器设计模式

文章目录 一、结构型设计模式二、适配器模式 一、结构型设计模式 这篇文章我们来讲解下结构型设计模式&#xff0c;结构型设计模式&#xff0c;主要处理类或对象的组合关系&#xff0c;为如何设计类以形成更大的结构提供指南。 结构型设计模式包括&#xff1a;适配器模式&…

Day04:每日一题:2661. 找出叠涂元素

2661. 找出叠涂元素 给你一个下标从 0 开始的整数数组 arr 和一个 m x n 的整数 矩阵 mat 。 arr 和 mat 都包含范围 [1&#xff0c;m * n] 内的 所有 整数。从下标 0 开始遍历 arr 中的每个下标 i &#xff0c;并将包含整数 arr[i] 的 mat 单元格涂色。请你找出 arr 中在 mat…

linux 磁盘管理、分区管理常用命令

文章目录 基础命令挂载新硬盘/分区添加内存交换分区swaplvm分区管理模式 基础命令 查看目录文件大小 du -sh /backup du -sh /backup/* du -sh *查看磁盘挂载信息 df -lhT查看某个目录挂载在哪个分区&#xff0c;以及分区的磁盘使用情况 df [目录] #例如&#xff1a;df /ho…

Scrapy爬虫异步框架之持久化存储(一篇文章齐全)

1、Scrapy框架初识&#xff08;点击前往查阅&#xff09; 2、Scrapy框架持久化存储 3、Scrapy框架内置管道&#xff08;点击前往查阅&#xff09; 4、Scrapy框架中间件&#xff08;点击前往查阅&#xff09; 5、Scrapy框架全站、分布式、增量式爬虫 Scrapy 是一个开源的、…

对于Web标准以及W3C的理解、对viewport的理解、xhtml和html有什么区别?

1、对于Web标准以及W3C的理解 Web标准 Web标准简单来说可以分为结构、表现、行为。 其中结构是由HTML各种标签组成&#xff0c;简单来说就是body里面写入标签是为了页面的结构。 表现指的是CSS层叠样式表&#xff0c;通过CSS可以让我们的页面结构标签更具美感。 行为指的是…

【Python表白系列】这个情人节送她一个漂浮的爱心吧(完整代码)

文章目录 漂浮的爱心环境需求完整代码详细分析系列文章 漂浮的爱心 环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0&#xff08;可选&#xff0c;这个库用于打包&#xff0c;使程序没有python环境也可以运行&#xff0c;如果想发给好朋友的话需要这…

c/c++概念辨析-指针常量常量指针、指针函数函数指针、指针数组数组指针

概念澄清&#xff1a; 统一规则&#xff1a; 不管是XX指针&#xff0c;还是指针XX&#xff0c;后者是本体&#xff0c;前者只是个定语&#xff0c;前者也可以替换为其他同类&#xff08;例如字符串&#xff09;&#xff0c;帮助理解。 XX指针&#xff1a; 可简单理解为&#…

基于helm的方式在k8s集群中部署gitlab - 部署(一)

文章目录 1. 背景说明2. 你可以学到什么&#xff1f;3. 前置条件4. 安装docker服务&#xff08;所有节点&#xff09;5. 部署k8s集群5.1 系统配置&#xff08;所有节点&#xff09;5.2 安装kubelet组件(所有节点)5.2.1 编写kubelet源5.2.2 安装kubelet5.2.3 启动kubelet 5.3 集…

从零开始,用Docker-compose打造SkyWalking、Elasticsearch和Spring Cloud的完美融合

&#x1f38f;&#xff1a;你只管努力&#xff0c;剩下的交给时间 &#x1f3e0; &#xff1a;小破站 "从零开始&#xff0c;用Docker-compose打造SkyWalking、Elasticsearch和Spring Cloud的完美融合 前言准备工作编写docker-compose.yml文件为什么使用本机ip为什么skywa…

python中的字符串

字符串 字符串是编程语言中的一种基本数据类型&#xff0c;用于表示一串字符序列。在Python中&#xff0c;字符串是不可变的&#xff0c;也就是说一旦字符串被创建&#xff0c;就无法修改其中的字符。 Python中的字符串可以用单引号或双引号括起来&#xff0c;例如&#xff1…

【LeetCode】 160. 相交链表

相交链表 题目题解 题目 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意&am…

卡码网15 .链表的基本操作III

链表的基础操作III 时间限制&#xff1a;1.000S 空间限制&#xff1a;128MB 题目描述 请编写一个程序&#xff0c;实现以下链表操作&#xff1a;构建一个单向链表&#xff0c;链表中包含一组整数数据。 1. 实现在链表的第 n 个位置插入一个元素&#xff0c;输出整个链表的…

0-1背包问题详解

0-1背包问题 部分一&#xff1a;问题描述 0-1背包问题是一类经典的组合优化问题&#xff0c;它出现在很多实际生活和工业环境中。问题描述如下&#xff1a; 假设你是一个冒险家&#xff0c;带着一个可承重的背包&#xff0c;面对一堆宝物。每件宝物都有自己的价值&#xff0…

【设计模式-2.1】创建型——单例模式

说明&#xff1a;设计模式根据用途分为创建型、结构性和行为型。创建型模式主要用于描述如何创建对象&#xff0c;本文介绍创建型中的单例模式。 饿汉式单例 单例模式是比较常见的一种设计模式&#xff0c;旨在确保对象的唯一性&#xff0c;什么时候去使用这个对象都是同一个…

Rust UI开发(一):使用iced构建UI时,如何在界面显示中文字符

注&#xff1a;此文适合于对rust有一些了解的朋友 iced是一个跨平台的GUI库&#xff0c;用于为rust语言程序构建UI界面。 iced的基本逻辑是&#xff1a; UI交互产生消息message&#xff0c;message传递给后台的update&#xff0c;在这个函数中编写逻辑&#xff0c;然后通过…

Pytest做性能测试?

Pytest其实也是可以做性能测试或者基准测试的。是非常方便的。 可以考虑使用Pytest-benchmark类库进行。 安装pytest-benchmark 首先&#xff0c;确保已经安装了pytest和pytest-benchmark插件。可以使用以下命令安装插件&#xff1a; pip install pytest pytest-benchmark …

黑马一站制造数仓实战1

1. 项目目标 一站制造 企业中项目开发的落地&#xff1a;代码开发 代码开发&#xff1a;SQL【DSL SQL】 SparkCore SparkSQL 数仓的一些实际应用&#xff1a;分层体系、建模实现 2. 内容目标 项目业务介绍&#xff1a;背景、需求 项目技术架构&#xff1a;选型、架构 项目环境…