Hadoop+Hive+Spark+Hbase开发环境练习

1.练习一

1.数据准备

在hdfs上创建文件夹,上传csv文件

[root@kb129 ~]# hdfs dfs -mkdir -p /app/data/exam

查看csv文件行数

[root@kb129 ~]# hdfs dfs -cat /app/data/exam/meituan_waimai_meishi.csv | wc -l

2.分别使用 RDD和 Spark SQL 完成以下分析(不用考虑数据去重)

开启spark shell

[root@kb129 ~]# spark-shell

(1)加载csv文件,创建RDD

scala> val fileRdd = sc.textFile("/app/data/exam/meituan_waimai_meishi.csv")

打印查看

scala> fileRdd.collect.foreach(println)

split两种用法

scala> a.map(x=>x.split(",")).collect.foreach(x=>println(x.toList))

List(a, b, c)

List(a, b, c, d)

List(a, b)

scala> a.map(x=>x.split(",",-1)).collect.foreach(x=>println(x.toList))

List(a, b, c)

List(a, b, c, d)

List(a, b, , , )

初步准备RDD,清洗数据(过滤掉首行,通过split切割数据(保留空字段),筛选保留字段长度为12的数据)

scala> val spuRdd = fileRdd.filter(x=>x.startsWith("spu_id")==false).map(x=>x.split(",",-1))

.filter(x=>x.size==12)

(2)使用 Spark,加载 HDFS 文件系统 meituan_waimai_meishi.csv 文件,

并分别使用 RDD和 Spark SQL 完成以下分析(不用考虑数据去重)

1)RDD操作

scala> spuRdd.collect.foreach(x=>println(x.toList))

统计每个店铺分别有多少商品(SPU)

scala> spuRdd.map(x=>(x(2),1)).reduceByKey(_+_).collect.foreach(println)

统计每个店铺的总销售额

scala> spuRdd.map(x=>(x(2),x(5).toDouble*x(7).toInt)).filter(x=>x._2>0).reduceByKey(_+_)

.collect.foreach(println)

统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,

其中销售额为 0 的商品不进行统计计算,例如:如果某个店铺销售为 0,则不进行统计

scala>spuRdd.map(x=>(x(2),x(4),x(5).toDouble*x(7).toInt)).filter(x=>x._3>0).groupBy(x=>x._1)

.mapValues(x=>x.toList.sortBy(item=>0-item._3).take(3)).flatMapValues(x=>x).map(x=>x._2)

.collect.foreach(println)

第二种方式

scala>spuRdd.map(x=>(x(2),x(4),x(5).toDouble*x(7).toInt)).filter(x=>x._3>0).groupBy(x=>x._1)

.flatMap(x=>{x._2.toList.sortBy(item=>0-item._3).take(3)}).collect.foreach(println)

第三种方式

scala>spuRdd.map(x=>(x(2),x(4),x(5).toDouble*x(7).toInt)).filter(x=>x._3>0).groupBy(x=>x._1)

.map(x=>{x._2.toList.sortBy(i=>0-i._3).take(3)}).flatMap(x=>x).collect.foreach(println)

2)使用spark Sql方式查询

读取hdfs中的文件,创建RDD

scala>val spuDF = spark.read.format("csv").option("header",true).option("inferSchema",true)

.load("hdfs://kb129:9000/app/data/exam/meituan_waimai_meishi.csv")

创建表视图,通过SQL语句查询

scala> spuDF.createOrReplaceTempView("spu")

统计每个店铺分别有多少商品(SPU)

scala> spark.sql("select shop_name, count(spu_name) as num from spu

group by shop_name").show

统计每个店铺的总销售额

scala> spark.sql("select shop_name, sum(spu_price*month_sales) as sumPrice from spu

where month_sales != 0 group by shop_name").show

统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,其中销售额为 0 的商品不进行统计计算,例如:如果某个店铺销售为 0,则不进行统计

spark.sql("select t.shop_name, t.spu_name, t.money, t.rank

from (select shop_name, spu_name, spu_price*month_sales as money, row_number() over(partition by shop_name order by spu_price*month_sales desc) as rank from spu where month_sales != 0) t where t.rank < 4").show(100)

3. 在 HBase 中创建命名空间(namespace)exam,在该命名空间下创建 spu 表,该表下有1 个列族 result。

启动zookeeper并启动Hbase

[root@kb129 ~]# zkServer.sh start

[root@kb129 ~]# start-hbase.sh

[root@kb129 ~]# hbase shell

创建namespace

hbase(main):004:0> create_namespace 'exam202009'

创建表

hbase(main):006:0> create 'exam202009:spu','result'

查看表

hbase(main):007:0> list_namespace_tables 'exam202009'

在 Hive 中 创 建 数 据 库 spu_db , 在 该 数 据 库 中 创 建 外 部 表 ex_spu 指 向/app/data/exam 下的测试数据 ;创建外部表 ex_spu_hbase 映射至 HBase 中的 exam:spu表的 result 列族

启动hive

[root@kb129 ~]# hive

创建数据库

hive (default)> create databases spu_db;

切换数据库

hive (default)> use spu_db;

创建外部表ex_spu指向/app/data/exam下的测试数据

ex_spu 表结构如下:

字段名称 中文名称 数据类型

spu_id 商品 spuID string

shop_id 店铺 ID string

shop_name 店铺名称 string

category_name 类别名称 string

spu_name SPU 名称 string

spu_price SPU 商品价格 double

spu_originprice SPU 商品原价 double

month_sales 月销售量 int

praise_num 点赞数 int

spu_unit SPU 单位 string

spu_desc SPU 描述 string

spu_image 商品图片 string

create external table if not exists ex_spu(spu_id string,shop_id string,shop_name string,category_name string,spu_name string,spu_price double,spu_originprice double,month_sales int,praise_num int,spu_unit string,spu_desc string,spu_image string)row format delimited fields terminated by ","stored as textfile location "/app/data/exam"tblproperties("skip.header.line.count"="1");

创建外部表 ex_spu_hbase 映射至 HBase 中的 exam:spu表的 result 列族

ex_spu_hbase 表结构如下:

字段名称 字段类型 字段含义

key string rowkey

sales double 销售额

praise int 点赞数

创建表映射Hbase

create external table if not exists ex_spu_hbase(key string,sales double,praise int)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' withserdeproperties("hbase.columns.mapping"=":key,result:sales,result:praise")tblproperties("hbase.table.name"="exam202009:spu");

统计每个店铺的总销售额 sales, 店铺的商品总点赞数 praise,并将 shop_id 和shop_name 的组合作为 RowKey,并将结果映射到 HBase

导入查询数据至HBase中

insert into ex_spu_hbase (select concat(shop_id, shop_name) as key, sum(spu_price*month_sales) as sales, sum(praise_num) as praise from ex_spu group by shop_id, shop_name);

完成统计后,分别在 hive 和 HBase 中查询结果数据

hive (spu_db)> select * from ex_spu_hbase limit 3;

hbase(main):009:0> scan 'exam202009:spu'

2.练习二

1.数据准备

1)在 HDFS 中创建目录/data/userbehavior,并将 UserBehavior.csv 文件传到该目

[root@kb129 ~]# hdfs dfs -mkdir -p /data/userbehavior

[root@kb129 ~]# hdfs dfs -mkdir -put /opt/examdata/UserBehavior.csv /data/userbehavior

2)通过 HDFS 命令查询出文档有多少行数据

[root@kb129 ~]# hdfs dfs -cat /data/userbehavior/UserBehavior.csv | wc -l

2.数据清洗

1)在 Hive 中创建数据库 exam

hive (exam)> create database exam;

hive (exam)> use exam;

2)在 exam 数据库中创建外部表 userbehavior,并将 HDFS 数据映射到表中

create external table if not exists userbehavior(user_id int,item_id int,category_id int,behavior_type string,`time` bigint)row format delimited fields terminated by ","stored as textfile location "/data/userbehavior";

3)在 HBase 中创建命名空间 exam,并在命名空间 exam 创建 userbehavior 表,包

含一个列簇 info

hbase(main):003:0> create_namespace 'exam202010'

hbase(main):004:0> create 'exam202010:userbehavior','info'

4)在 Hive 中创建外部表 userbehavior_hbase,并映射到 HBase 中,并将数

据加载到 HBase 中

create external table if not exists userbehavior_hbase(user_id int,item_id int,category_id int,behavior_type string,`time` bigint)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' withserdeproperties("hbase.columns.mapping"=":key,info:item_id,info:category_id,info:behavior_type,info:time")tblproperties("hbase.table.name"="exam202010:userbehavior");

hive (exam)> insert into userbehavior_hbase (select * from userbehavior);

查看

hive (exam)> select * from userbehavioe_hbase limit 3;

hbase(main):006:0> scan 'exam202010:userbehavior'

5)在 exam 数据库中创建内部分区表 userbehavior_partitioned(按照日期进行分区),

并通过查询 userbehavior 表将时间戳格式化为”年-月-日 时:分:秒”格式,将数据插

入至 userbehavior_partitioned 表中

create table userbehavior_partitioned(user_id int,item_id int,category_id int,behavior_type string,`time` string)partitioned by (dt string)stored as orc;

插入数据

hive (exam)> set hive.exec.dynamic.partition=true;

hive (exam)> set hive.exec.dynamic.partition.mode=nonstrict;

hive (exam)> insert into table userbehavior_partitioned partition (dt)

select user_id, item_id,category_id,behavior_type

,from_unixtime(`time`) as `time`,from_unixtime(`time`,'yyyy-MM-dd') as dt  from userbehavior;

查看分区

hive (exam)> show partitions userbehavior_partitioned;

3.用户行为分析

请使用 Spark,加载 HDFS 文件系统 UserBehavior.csv 文件,并分别使用 RDD 完成以下

分析。

scala> val fileRdd = sc.textFile("/data/userbehavior/UserBehavior.csv")

1)统计 uv 值(一共有多少用户访问淘宝)

scala> fileRdd.map(_.split(",")).filter(_.length==5).map(_(0)).distinct().count

res2: Long = 5458

scala> fileRdd.map(_.split(",")).filter(_.length==5).groupBy(_(0)).count

2)分别统计浏览行为为点击,收藏,加入购物车,购买的总数量

scala> fileRdd.map(_.split(",")).filter(_.length==5)

.map(x=>(x(3),1)).reduceByKey(_+_).collect.foreach(println)

(cart,30888)                                                                   

(buy,11508)

(pv,503881)

(fav,15017)

scala> fileRdd.map(_.split(",")).filter(_.length==5).map(x=>(x(3),1)).groupByKey()

.map(x=>(x._1,x._2.toList.size)).collect.foreach(println)

4.找出有价值的用户

1)使用 SparkSQL 统计用户最近购买时间。以 2017-12-03 为当前日期,计算时间范围

为一个月,计算用户最近购买时间,时间的区间为 0-30 天,将其分为 5 档,0-6 天,7-12

天,13-18 天,19-24 天,25-30 天分别对应评分 4 到 0

withtb as (select user_id, datediff('2017-12-03',max(dt)) as diff, max(dt)from userbehavior_partitionedwhere dt > '2017-11-03' and behavior_type='buy' group by user_id)select user_id,(case when diff between 0 and 6 then 4when diff between 7 and 12 then 3when diff between 13 and 18 then 2when diff between 19 and 24 then 1when diff between 25 and 30 then 0 else null end) as tagfrom tb;

2)使用 SparkSQL 统计用户的消费频率。以 2017-12-03 为当前日期,计算时间范围为

一个月,计算用户的消费次数,用户中消费次数从低到高为 1-161 次,将其分为 5

档,1-32,33-64,65-96,97-128,129-161 分别对应评分 0 到 4

withtb as (select user_id, count(user_id) as numfrom userbehavior_partitionedwhere dt between '2017-11-03' and '2017-12-03' and behavior_type='buy' group by user_id)select user_id,(case when num between 129 and 161 then 4when num between 97 and 128 then 3when num between 65 and 96 then 2when num between 33 and 64 then 1when num between 1 and 32 then 0 else null end) as tagfrom tb;

3.练习三

1.数据准备

在 HDFS 中创建目录/app/data/exam,并将 countrydata.csv 传到该目录

查看数据行数

[root@kb129 ~]# hdfs dfs -cat /app/data/exam/countrydata.csv | wc -l

2.在 Spark-Shell 中,加载 HDFS 文件系统 countrydata.csv 文件,并使用 RDD 完成以下统计计算。

scala> val fileRdd = sc.textFile("/app/data/exam/countrydata.csv")

scala> val yqRdd = fileRdd.map(x=>x.split(","))

1)统计每个国家在数据截止统计时的累计确诊人数。

scala>yqRdd.map(x=(x(4),x(1).toInt)).reduceByKey((v1,v2)=>Math.max(v1,v2)).collect.foreach(println)

scala> yqRdd.map(x=>(x(4),x(2).toInt)).reduceByKey(_+_).collect.foreach(println)

2)统计全世界在数据截止统计时的总感染人数。

scala>fileRdd.filter(x=>(x(3).toInt-20200702<=0)).map(x=>("sum",x(2).toInt)).reduceByKey(_+_).map(x=>x._2).collect.foreach(println)

scala> yqRdd.map(x=>(x(4),x(2).toInt)).reduceByKey(_+_).reduce((x,y)=>("all",x._2+y._2))

res5: (String, Int) = (all,10755671)

3)统计每个大洲中每日新增确诊人数最多的国家及确诊人数,并输出 20200408 这一天各

大洲当日新增确诊人数最多的国家及确诊人数。

第一问

scala> yqRdd.map(x=>((x(6),x(3)),(x(1).toInt,x(2).toInt,x(4))))

.reduceByKey((v1,v2)=>{if(v1._2>v2._2) v1 else v2}).collect.foreach(println)

第二问

scala> yqRdd.map(x=>((x(6),x(3)),(x(1).toInt,x(2).toInt,x(4))))

.reduceByKey((v1,v2)=>{if(v1._2>v2._2) v1 else v2})

.filter(x=>x._1._2=="20200408")

.map(x=>(x._1._1,x._1._2,x._2._3,x._2._1,x._2._2)).collect.foreach(println)

4)统计每个大洲中每日累计确诊人数最多的国家及确诊人数,并输出 20200607 这一天各

大洲当日累计确诊人数最多的国家及确诊人数。

第一问

scala> yqRdd.map(x=>((x(6),x(3)),(x(1).toInt,x(2).toInt,x(4))))

.reduceByKey((v1,v2)=>{if(v1._1>v2._1) v1 else v2})

.map(x=>(x._1._1,x._1._2,x._2._3,x._2._1,x._2._2)).collect.foreach(println)

第二问

scala> yqRdd.map(x=>((x(6),x(3)),(x(1).toInt,x(2).toInt,x(4))))

.reduceByKey((v1,v2)=>{if(v1._1>v2._1) v1 else v2})

.filter(x=>x._1._2=="20200607")

.map(x=>(x._1._1,x._1._2,x._2._3,x._2._1,x._2._2)).collect.foreach(println)

(北美洲,20200607,美国,1938931,19501)

(南美洲,20200607,巴西,691962,32848)

(亚洲,20200607,印度,246628,9971)

(其他,20200607,钻石公主号邮轮,712,0)

(非洲,20200607,南非,48285,2312)

(欧洲,20200607,俄罗斯,467673,8984)

(大洋洲,20200607,澳大利亚,7255,4)

5)统计每个大洲每月累计确诊人数,显示 202006 这个月每个大洲的累计确诊人数

scala> yqRdd.map(x=>((x(6),x(3).substring(0,6)),(x(2).toInt))).reduceByKey(_+_)

.filter(x=>x._1._2 == "202006").collect.foreach(println)

((北美洲,202006),1069682)

((欧洲,202006),461525)

((大洋洲,202006),690)

((亚洲,202006),1151411)

((其他,202006),0)

((南美洲,202006),1357019)

((非洲,202006),258433)

3.创建 HBase 数据表

在 HBase 中创建命名空间(namespace)exam,在该命名空间下创建 covid19_world 表,使用大洲和统计日期的组合作为 RowKey(如“亚洲 20200520”),该表下有 1 个列族record。record 列族用于统计疫情数据(每个大洲当日新增确诊人数最多的国家record:maxIncreaseCountry 及其新增确诊人数 record:maxIncreaseCount)。

hbase(main):009:0> create_namespace 'exam202011'

hbase(main):009:0> create 'exam202011:covid19_world','record'

4.在 Hive 中创建数据库 exam,在该数据库中创建外部表 ex_exam_record 指向/app/data/exam 下的疫情数据 ;创建外部表 ex_exam_covid19_record 映射至 HBase 中的exam:covid19_world 表的 record 列族

ex_exam_record 表结构如下:

字段名称 字段类型 字段含义

id string 记录 ID

confirmedCount int 累计确诊人数

confirmedIncr int 新增确诊人数

recordDate string 记录时间

countryName string 国家名

countryShortCode string 国家代码

continent string 大洲

create database exam202011;
use exam202011;
create external table if not exists ex_exam_record(id string,confirmedCount int,confirmedIncr int,recordDate string,countryName string,countryShortCode string,continent string
)
row format delimited fields terminated by ','
stored as textfile location '/app/data/exam';

ex_exam_covid19_record 表结构如下:

字段名称 字段类型 字段含义

key string rowkey

maxIncreaseCountry string 当日新增确诊人数最多的国家

maxIncreaseCount int 新增确诊人数

create external table if not exists ex_exam_covid19_record(key string,maxIncreaseCountry string,maxIncreaseCount int)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'with serdeproperties ("hbase.columns.mapping"=":key,record:maxIncreaseCountry,record:maxIncreaseCount")tblproperties ("hbase.table.name"="exam202011:covid19_world");

5. 使用 ex_exam_record 表中的数据

1)统计每个大洲中每日新增确诊人数最多的国家,将 continent 和 recordDate 合并成

rowkey,并保存到 ex_exam_covid19_record 表中。

withtb as(select continent, recordDate, countryName, confirmedIncr,dense_rank() over (partition by continent, recordDate order by confirmedIncr desc) as rankfrom ex_exam_record)insert into table ex_exam_covid19_recordselect concat(continent, recordDate)  key, countryName maxIncreaseCountry, confirmedIncr maxIncreaseCountfrom tb where rank = 1;

2)完成统计后,在 HBase Shell 中遍历 exam:covid19_world 表中的前 20 条数据。

hbase(main):009:0> scan 'exam202011:covid19_world',LIMIT=>20

4.练习四

1.数据准备

请在 HDFS 中创建目录/app/data/exam,并将 answer_question.log 传到该目录。

[root@kb129 ~]# hdfs dfs -cat /app/data/exam202101/answer_question.log | wc -l

2.在 Spark-Shell 中,加载 HDFS 文件系统 answer_question.log 文件,并使用 RDD 完成

以下分析,也可使用 Spark 的其他方法完成数据分析。

scala> val rdd = sc.textFile("/app/data/exam202101/answer_question.log")

1)提取日志中的知识点 ID,学生 ID,题目 ID,作答结果 4 个字段的值

rdd.map(x => x.split(" ")).map(x => (x(9), x(10))).map(x => (x._1.split("_"), x._2.split(","))).map(x => (x._1(1), x._1(2), x._1(3), x._2(0))).map(x => (x._1, x._2, x._3.substring(0, x._3.length - 1), x._4)).collect.foreach(println)

2)将提取后的知识点 ID,学生 ID,题目 ID,作答结果字段的值以文件的形式保存到 HDFS的/app/data/result 目录下。一行保留一条数据,字段间以“\t”分割。文件格式如下所示。(提示:元组可使用 tuple.productIterator.mkString("\t")组合字符串,使用其他方法处

理数据只要结果正确也给分)

rdd2.map(x => x._1 + "\t" + x._2 + "\t" + x._3 + "\t" + x._4).saveAsTextFile("hdfs://kb129:9000/app/data/result")

34434481 8195023659599 1018 0

34434425 8195023659599 7385 1

34434457 8195023659596 7346 1

34434498 8195023659597 6672 0

34434449 8195023659594 4809 1

34434489 8195023659596 7998 0.5

34434492 8195023659595 9406 0

34434485 8195023659597 8710 1

3.创建 HBase 数据表

在 HBase 中创建命名空间(namespace)exam,在该命名空间下创建 analysis 表,使用学生 ID 作为 RowKey,该表下有 2 个列族 accuracy、question。accuracy 列族用于保存学 员 答 题 正 确 率 统 计 数 据 ( 总 分 accuracy:total_score , 答 题 的 试 题 数accuracy:question_count,正确率 accuracy:accuracy);question 列族用于分类保存学员正确,错 误和半对的题目 id (正确 question:right,错误 question:error,半对question:half)

hbase(main):019:0> create_namespace 'exam202101'

hbase(main):019:0> create 'exam202101:analysis','accuracy','question'

4.请在 Hive 中创建数据库 exam,在该数据库中创建外部表 ex_exam_record 指向/app/data/result 下 Spark 处理后的日志数据 ;创建外部表 ex_exam_anlysis 映射至 HBase中的 analysis 表的 accuracy 列族;创建外部表 ex_exam_question 映射至 HBase 中的analysis 表的 question 列族

create database exam202101;use exam202101;

ex_exam_record 表结构如下:

字段名称 字段类型 字段含义

topic_id string 知识点 ID

student_id string 学生 ID

question_id string 题目 ID

score float 作答结果

create external table if not exists ex_exam_record(topic_id string,student_id string,question_id string,score float)row format delimited fields terminated by '\t'stored as textfile location '/app/data/result';

ex_exam_anlysis 表结构如下:

字段名称 字段类型 字段含义

student_id string 学生 ID

total_score float 总分

question_count int 答题的试题数

accuracy float 正确率

create external table if not exists ex_exam_anlysis(student_id string,total_score float,question_count int,accuracy float)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'with serdeproperties("hbase.columns.mapping"=":key,accuracy:total_score,accuracy:question_count,accuracy:accuracy")tblproperties ("hbase.table.name"="exam202101:analysis");

ex_exam_question 表结构如下:

字段名称 字段类型 字段含义

student_id string 学生 ID

right string 所有作对的题目的 ID 列表

half string 所有半对的题目的 ID 列表

error float 所有做错的题目的 ID 列表

create external table if not exists ex_exam_question(student_id string,`right` string,half string,error string)stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'with serdeproperties("hbase.columns.mapping"=":key,question:right,question:half,question:error")tblproperties ("hbase.table.name"="exam202101:analysis");

5.使用 ex_exam_record 表中的数据统计每个学员总分、答题的试题数和正确率,并保存

到 ex_exam_anlysis 表中,其中正确率的计算方法如下:

正确率=总分/答题的试题数

withtb as (select student_id, sum(score) sumScore, count(question_id) num from ex_exam_record group by student_id)insert into table ex_exam_anlysisselect student_id, sumScore, num, sumScore/num from tb;

6.使用 ex_exam_record 表中的数据统计每个作对,做错,半对的题目列表。

1)题目 id 以逗号分割,并保存到 ex_exam_question 表中

witht1 as (select student_id,case score when 1 then question_id else null end `right`,case score when 0.5 then question_id else null end half,case score when 0 then question_id else null end errorfrom ex_exam_record)insert into table ex_exam_questionselect student_id,concat_ws(',',collect_set(`right`)) `right`,concat_ws(',',collect_set(half)) half,concat_ws(',',collect_set(error)) errorfrom t1 group by student_id;

2)完成统计后,在 HBase Shell 中遍历 exam:analysis 表并只显示 question 列族中的数据

hbase(main):011:0> scan 'exam202101:analysis',COLUMN=>'question'

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/209124.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用AOS实现网页动画效果

在现代Web开发中&#xff0c;动画效果是提升用户体验和页面交互性的重要因素之一。而AOS&#xff08;Animate On Scroll&#xff09;作为一个强大的动画库&#xff0c;可以帮助我们轻松地实现网页元素的滚动动画效果。 什么是AOS&#xff1f; AOS是一个基于CSS3和JavaScript的…

【elementUI】el-tab相关问题

Tabs 标签页 分隔内容上有关联但属于不同类别的数据集合。 <template><el-tabs v-model"activeName" tab-click"handleClick"><el-tab-pane label"用户管理" name"first">用户管理</el-tab-pane><el-tab-p…

LabVIEW远程监控

LabVIEW远程监控 远程监控的应用场景 从办公室远程监控工厂车间的测试设备。 在世界另一端的偏远地区监控客户现场的发电设备。 从公司远程监控外场的产品。 技术更新与方法 自2018年以来&#xff0c;NI对基于Web的应用程序支持大幅增长。一些最初的方法&#xff08;如Lab…

深入了解Java8新特性-日期时间API之TemporalQuery、TemporalQueries

阅读建议 嗨&#xff0c;伙计&#xff01;刷到这篇文章咱们就是有缘人&#xff0c;在阅读这篇文章前我有一些建议&#xff1a; 本篇文章大概2000多字&#xff0c;预计阅读时间长需要5分钟。本篇文章的实战性、理论性较强&#xff0c;是一篇质量分数较高的技术干货文章&#x…

分布式锁框架Lock4j简单使用

最近项目中使用到了Lock4j的分布式锁组件&#xff0c;小编今天就带大家学习一下该框架&#xff0c;以及如何在我们项目中进行集成使用。 一、简介 Lock4j是一个分布式锁组件&#xff0c;它提供了多种不同的支持以满足不同性能和环境的需求&#xff1b;它基于Spring AOP&#…

YOLOv7+姿态估计Pose+tensort部署加速

YOLOv7-Pose YOLOv7是一种高效的目标检测算法&#xff0c;用于实时物体检测。姿态估计Pose是一种用于识别和跟踪人体关键点的技术。TensorRT是一个针对深度学习推理任务进行加速的高性能推理引擎。 将YOLOv7和姿态估计Pose与TensorRT结合可以实现快速而准确的目标检测和姿态估…

SSM框架(五):Maven进阶

文章目录 一、分模块开发1.1 分模块开发的意义1.2 步骤 二、依赖管理2.1 依赖传递2.2 可选依赖和排除依赖 三、继承与聚合3.1 聚合3.2 继承3.3 聚合和继承区别 四、属性4.1 pom文件的依赖使用属性4.2 资源文件使用属性 五、多环境开发六、跳过测试七、私服7.1 下载与使用7.2 私…

IDEA2022 Git 回滚及回滚内容恢复

IDEA2022 Git 回滚 ①选择要回滚的地方&#xff0c;右键选择 ②选择要回滚的模式 ③开始回滚 ④soft模式回滚的内容会保留在暂存区 ⑤输入git push -f &#xff0c;然后重新提交&#xff0c;即可同步远程 注意观察IDEA右下角分支的标记&#xff0c;蓝色代表远程内容未同步到本…

Spring MVC学习随笔-控制器(Controller)开发详解:接受客户端(Client)请求参数

学习视频&#xff1a;孙哥说SpringMVC&#xff1a;结合Thymeleaf&#xff0c;重塑你的MVC世界&#xff01;&#xff5c;前所未有的Web开发探索之旅 第三章、SpringMVC控制器开发详解 3.1 核心要点 &#x1f4a1; 1. 接受客户端&#xff08;client&#xff09;请求参数[讲解] 2…

vue+less+style-resources-loader 配置全局颜色变量

全局统一样式后&#xff0c;可配置vue.config.js实现全局颜色变量&#xff0c;方便在编写时使用统一风格的色彩 一、新建global.less 二、下载安装style-resources-loader npm i style-resources-loader --save-dev三、在vue.config.js中进行配置 module.exports {pluginOpt…

二. BEV感知算法基础模块讲解

目录 前言0. 简述1. 基础模块补充讲解1.1 2D图像处理1.2 3D特征之点处理方案1.3 3D特征之体素处理方案 2. 从2D到3D转换模块2.1 LSS(Lift,Splat and Shoot)2.2 Pseudo LiDAR 3. 从3D到2D转换模块3.1 Explicit Mapping3.2 Implicit Mapping 4. BEV感知中的Transformer4.1 空间注…

正是阶段高等数学复习--函数极限的计算

之前在预备阶段中函数极限的解决方式分三步&#xff0c;第一步观察形式并确定用什么方式来解决&#xff0c;第二步化简&#xff0c;化简方式一共有7种&#xff0c;分别是最重要的三种&#xff08;等价替换、拆分极限存在的项、计算非零因子&#xff09;以及次重要的4种&#xf…

教你一招,轻松搭建dns域名服务器

目录 一、DNS简介二、安装DNS 一、DNS简介 域名系统&#xff08;DNS&#xff09;是一个分层的分布式数据库。它存储用于将Internet主机名映射到IP地址&#xff08;反之亦然&#xff09;的信息、邮件路由信息以及Internet应用程序使用的其他数据。 客户端通过调用解析器库在DNS…

高端制造业中的通用性超精密3D光学测量仪器

超精密光学3D测量仪器具有高精度、自动化程度高、实时反馈和范围广等优势。它能够实现微米级别的精确测量&#xff0c;能够精确测量产品的尺寸、形状和表面粗糙度等&#xff0c;具有广泛的应用价值和重要意义。 超精密光学3D测量仪器配备多种传感器、控制器和计算机系统&#…

Java(十)(网络编程,UDP,TCP)

目录 网络编程 两种软件架构 网络通信的三要素 IP IPv4的地址分类 特殊IP 端口号 协议 用UDP协议发送数据 用UDP接收数据 TCP接收和发送数据 TCP通信--支持与多个客户端同时通信 网络编程 可以让设备中的程序与网络上其他设备的程序进行数据交互(实现网络通信) 两…

go自定义端口监听停用-------解决端口被占用的问题

代码 package mainimport ("fmt""log""net""os/exec""strconv""strings" )func getSelect(beign int, end int) int {var num intfor {_, err : fmt.Scan(&num)if err ! nil {fmt.Println("输入错误&am…

redis实现消息延迟队列

业务场景 在很多软件系统功能中都会出现定时任务的业务场景,比如提前点单,比如定时发布动态,文章等而出现这样的的定时的任务为延迟队任务 代码模块 任务的持久化一般都需要建立一个任务表和任务日志表,避免宕机导致任务失效,先新建立一个数据库,创建基本的任务表和任务日志表…

字符串冲刺题

关卡名 字符串冲刺题 我会了✔️ 内容 1.掌握最长公共前缀问题 ✔️ 2.掌握字符串压缩问题 ✔️ 3.如果想挑战一下就研究&#xff1a;表示数值的字符串 ✔️ 1 最长公共前缀 这是一道经典的字符串问题&#xff0c;LeetCode14 先看题目要求&#xff1a;编写一个函数来查找…

28.线段树与树状数组基础

一、线段树 1.区间问题 线段树是一种在算法竞赛中常用来维护区间的数据结构。它思想非常简单&#xff0c;就是借助二叉树的结构进行分治&#xff0c;但它的功能却非常强大&#xff0c;因此在很多类型的题目中都有它的变种&#xff0c;很多题目都需要以线段树为基础进行发展。…

git报错invalid object xxx和unable to read tree xxxxxx

电脑出问题了&#xff0c;导致git仓库像是被损坏了一样&#xff0c;执行git status就会报错unable to read ree&#xff0c;无法正常提交代码至仓库&#xff0c;原因是本地代码仓库.git文件损坏了&#xff0c;无法找到正确的提交历史和路径。 找到了一个解决办法&#xff1a; …