51单片机制作数字频率计

文章目录

  • 简介
  • 设计思路
  • 工作原理
  • Proteus软件仿真
  • 软件程序
  • 实验现象
  • 测量误差和范围
  • 总结

简介

数字频率计是能实现对周期性变化信号频率测量的仪器。传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行较慢,而且测量频率的范围较小。这篇文章介绍以单片机STC89C52为核心,通过对输入的脉冲进行计数,运用单片机的运算和控制功能并采用数码管将所测频率显示出来。软件方面采用C语言编程,运用定时计数器测量频率,再调显示函数,将测得的结果显示在数码管上。系统简单可靠、操作简易,能基本满足一般情况下的需要。既保证了系统的测频精度,又使系统具有较好的实时性。

设计思路

本次设计主要分成两大方面:硬件电路的设计和软件程序的设计。硬件电路方面,采用STC89C52单片机最小系统,便可实现要求。程序的设计方面,采用C语言编写程序。其整体框图如图1所示:
在这里插入图片描述

工作原理

此数字频率计是利用单片机的P3.4(T0)引脚作为被测矩形波信号输入端,且单片机晶振FOSC=12MHZ,当外部脉冲信号,即被测矩形波信号从P3.4进入单片机,同时启动定时器T0和计数器T1,T0是工作在计数状态下,对输入的频率信号进行计数,工作在计数状态下的T0的最大计数值为65535则:T0的最大计数频率为65535Hz,T1是工作在定时状态下,每定时1秒,就停止T1的计数,而从T1的计数单元中读取的计数值在进行数据处理后,送到数码显示管显示出来,因为T1工作在定时状态下的最大定时时间为65ms,达不到1秒的定时,所以采用50ms,共定时20次,即可完成1秒的定时功能。

Proteus软件仿真

如图所示,是在proteus软件数字频率计的仿真。
在这里插入图片描述
将要测量的脉冲输入单片机的P3.4引脚。
在这里插入图片描述

软件程序

 #include "reg52.h"
sbit L1 = P1^0;
sbit S1 = P3^2;
unsigned char code SMG_duanma[18]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x80,0xc6,0xc0,0x86,0x8e,0xbf,0x7f};
unsigned char count = 0;unsigned int frequency = 0;
unsigned char start=1;
unsigned char flag = 0;
void InitTimer()	  
{TMOD = 0x15;  //T1定时,T0计数,TH1 = (65535 - 50000) / 256;TL1 = (65535 - 50000) % 256;TH0 = 0x00;TL0 = 0x00;ET1 = 1;ET0 = 1;EA = 1;TR1 = 1;TR0 = 1;}unsigned int i = 0;
void ServiceTimer1() interrupt 3
{TH1 = (65535 - 50000) / 256;TL1 = (65535 - 50000) % 256;i++;  if(i==20){i = 0;TR0=0; //停止计数TR1=0; //停止定时frequency=(TH0*256+TL0); //求出频率值 就是1秒内脉冲次数TH0=0x00; //计数值清零TL0=0x00;TH1 = (65535 - 50000) / 256;TL1 = (65535 - 50000) % 256;start=1; //启动定时器开启变量}
}void Init_INT0()
{IT0 = 1;EX0 = 1;EA = 1;
}void ServiceINT0() interrupt 0
{	if(flag == 0){	frequency = 0;}if(flag!=0)frequency++;flag = 1;}void DisplaySMG_Bit(unsigned char value, unsigned char pos)
{P0 = 0xff;P2 = 0x01 << pos; P0 = value;
}void DelaySMG(unsigned int t)
{while(t--);
}void Display_Dynamic()
{DisplaySMG_Bit(SMG_duanma[frequency/100000],0);	       DelaySMG(500);DisplaySMG_Bit(SMG_duanma[frequency%100000/10000],1);		 DelaySMG(500);DisplaySMG_Bit(SMG_duanma[frequency%10000/1000],2);			 DelaySMG(500);DisplaySMG_Bit(SMG_duanma[frequency%1000/100],3);	DelaySMG(500);DisplaySMG_Bit(SMG_duanma[frequency%100/10],4);			 DelaySMG(500);DisplaySMG_Bit(SMG_duanma[frequency%100%10],5);	DelaySMG(500);}void Delay(unsigned char t)
{while(t--){Display_Dynamic();}
}void DelayK(unsigned char t)
{while(t--);
}void ScanKeys_Alone()
{if(S1 == 0){DelayK(100);if(S1 == 0){TR0=0; //停止计数TR1=0; //停止定时if(flag == 0){frequency = 0;}if(flag!=0)frequency++;flag = 1;while(!S1);}}
}
void main()
{	InitTimer();Init_INT0();while(1){ 	 ScanKeys_Alone();if(start==1){TR0=1; //启动定时器TR1=1; //启动计数器start=0; //关闭启动变量位 保证1秒时间}Display_Dynamic();Delay(200);if(flag == 1)				                      {start = 0;}}
}

实验现象

双击器件DCLOCK对外部输入矩形脉冲的频率进行设置:
50hz:
在这里插入图片描述
在这里插入图片描述
100hz:
在这里插入图片描述

在这里插入图片描述
500hz:
在这里插入图片描述
在这里插入图片描述
1000hz:
在这里插入图片描述
在这里插入图片描述

测量误差和范围

当测频时,启动定时计数器时,若从T0(P3.4)输入矩形波刚好为高电平,而当1s定时到时刚好为高电平时,此时测得的频率值最准确。若启动定时计数器时,输入的矩形波刚好处于低电平,而当定时1s到时矩形波刚好要发生负跳变时,此时测得的频率误差最大。定时计数器的工作方式选择与初值的赋予不一定精准,容易引起误差。定时计数器的工作方式选择不同,最后的结果也会有所差异。工作方式2相比于工作方式0和工作方式1误差更小。其次,采用中断或查询的方式也会影响实验结果。采用查询方式的误差比采用中断误差更小。

电子计数器测频法主要是将被测频率信号加到计数器的计数输入端,然后让计数器在标准时间 Ts1 内进行计数,所得的计数值 N1。与被测信号的频率 fx1 的关系如下:
在这里插入图片描述
主要误差源是由于计数器只能进行整数计数而引起的±1 误差:
在这里插入图片描述
工作在计数状态下的16位计数器T0的最大计数值为65535,理论上可以测的频率范围是0-65535hz,实际仿真测试最大为65.5KHz,测量显示值为65530hz,误差为0.04%
在这里插入图片描述
经过测试在一定误差允许和测量范围内,数字频率计可以正常工作。下图是基于上述方案的数字频率计原理图设计参考。可实现下面功能:
(1)将外部矩形脉冲输入T0引脚,即将外部输入脉冲用导线连接到P3.4引脚,可以做外部脉冲输入数字频率计。
(2)扩展功能:当按下按键,停止对外部矩形脉冲计数,改为单脉冲计数。当按下一次按键,计数值加1,并显示到数码管上。(PS:LED可作为其它功能扩展使用)。

在这里插入图片描述

总结

频率的测量可以采用数字逻辑电路来实现,也可以采用单片机进行控制。前者不仅实现的电路复杂,而且测量频率的范围较小,而利用单片机的定时器可以很方便的进行信号频率的测量,只需要在电脑上编写程序,然后在相应的显示电路进行显示就可以了,可以使用STC89C51单片机的定时器、计数器的定时和计数功能,外部扩展6位LED数码管,累计每秒进入单片机的外部脉冲个数,用LED数码管显示出来,实现基于单片机数字频率计的制作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/210574.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java--抽象类的常见应用场景:模板方法设计模式

1.模板方法设计模式解决了什么问题&#xff1f; ①解决方法中存在重复代码的问题。 2.模板方法设计模式的写法 1、定义一个抽象类。 2、在里面定义2个方法 ①一个是模板方法&#xff1a;把相同代码放里面去。 ②一个是抽象方法&#xff1a;具体实现交给子类完成。 分析&…

前端项目环境的搭建

一、下载并且安装Node&#xff08;不安装node&#xff0c;就安装nvm。nvm安装教程&#xff09;&#xff1a; 1.官网下载Node&#xff1a;https://nodejs.org/en/ 2.测试nodejs安装是否成功&#xff1a; 在windows powerShell中输入node -v 和 npm -v&#xff0c;看到版本号就…

Python编程技巧:多层for循环的高级应用

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com Python的for循环结构是编程中最基础也是最常用的控制结构之一。通过for循环&#xff0c;可以轻松遍历数据集合和执行重复的操作。然而&#xff0c;当我们面对多层for循环时&#xff0c;性能和可读性可能会成为挑…

【Vue】Linux 运行 npm run serve 报错 vue-cli-service: Permission denied

问题描述 在Linux系统上运行npm run serve命令时&#xff0c;控制台报错&#xff1a; sudo npm run serve project50.1.0 serve vue-cli-service serve sh: 1: vue-cli-service: Permission denied错误截图如下&#xff1a; 原因分析 该错误是由于vue-cli-service文件权限不…

Java中的Future源码讲解

JAVA Future源码解析 文章目录 JAVA Future源码解析前言一、传统异步实现的弊端二、what is Future ?2.1 Future的基本概念2.2Future 接口方法解析2.2.1 取消任务执行cancel2.2.2 检索任务是否被取消 isCancelled2.2.3 检索任务是否完成 isDone2.2.3 检索任务计算结果 get 三、…

系统运维安全之病毒自检及防护

一、前言 Linux勒索病毒&#xff08;Linux ransomware&#xff09;是一种最令人恶心的计算机恶意病毒&#xff0c;它以侵入Linux系统&#xff0c;捆绑文件并要求支付赎金才能释放文件为主要目的&#xff0c;破坏用户的数据&#xff0c;造成数据讹诈。Linux勒索病毒它们的存在已…

全网最新最全面的Appium自动化:Appium常用操作之app操作

APP操作方法: appium支持对手机上的app进行管理和操作&#xff0c;有如下方法&#xff1a; 1、install_app(self,app_path,**options): 安装app,app_path为安装包路径 2、remove_app(self,app_id,**options): 卸载app&#xff0c;app_id为app包名 3、is_app_installed(self,b…

VScode异常处理 (因为在此系统上禁止运行脚本)

在使用 VScode 自带程序终端的时候会报出"系统禁止脚本运行的错误" 这是由于 Windows PowerShell执行策略导致的 解决办法 管理员身份运行 Windows PowerShell执行&#xff1a;get-ExecutionPolicy1&#xff0c;显示Restricted2执行&#xff1a;Set-ExecutionPoli…

一文带你了解Java中synchronized原理

&#x1f308;&#x1f308;&#x1f308;今天给大家分享的是Java中 synchronized 的基本原理 清风的CSDN博客 &#x1f6e9;️&#x1f6e9;️&#x1f6e9;️希望我的文章能对你有所帮助&#xff0c;有不足的地方还请各位看官多多指教&#xff0c;大家一起学习交流&#xff…

国产接口测试工具APIpost

说实话&#xff0c;了解APIpost是因为&#xff0c;我的所有接口相关的文章下&#xff0c;都有该APIpost水军的评论&#xff0c;无非就是APIpost是中文版的postman&#xff0c;有多么多么好用&#xff0c;虽然咱也还不是什么啥网红&#xff0c;但是不知会一声就乱在评论区打广告…

MobaXterm连接相关

其实最终解决的方法&#xff0c;还是&#xff0c;因为要远程连接的是个局域网ip&#xff0c;我所在的ip和要连接的这个不在同一个局域网内&#xff0c;需要实验室搭的VPN才行。 甚至&#xff0c;我连防火墙都没关&#xff0c;也可以连接 至于修改密码&#xff0c;passwd&#…

沐风老师3DMAX键盘球建模方法详解

3DMAX键盘球建模教程 本教程给大家分享一个3dMax键盘球的建模方法过程。在学习本教程之前&#xff0c;大家需要对3dMax基本操作及建模知识有所掌握&#xff0c;还是那句话&#xff1a;做实例的前提是选学习基础知识和掌握3dMax的基本操作。 下面就给大家一步一步讲解演示3dMax…

Graphpad Prism10.1.0 安装教程 (含Win/Mac版)

GraphPad Prism GraphPad Prism是一款非常专业强大的科研医学生物数据处理绘图软件&#xff0c;它可以将科学图形、综合曲线拟合&#xff08;非线性回归&#xff09;、可理解的统计数据、数据组织结合在一起&#xff0c;除了最基本的数据统计分析外&#xff0c;还能自动生成统…

python socket编程7 - 使用PyQt6 开发UI界面新增实现UDP server和client单机通讯的例子

在第五篇中&#xff0c;简单实现了命令行下的 TCP/UDP server和client的单机通讯。 在第六篇中&#xff0c;实现了PyQt6开发界面&#xff0c;TCP协议实现的单机server和client的通讯功能。 这一篇&#xff0c;在第六篇的基础上&#xff0c;增加了UDP server和client的单机通讯功…

四川云汇优想:抖音直播等级怎么升级?

抖音直播&#xff0c;作为当前最热门的社交平台之一&#xff0c;其等级体系一直备受用户关注。如何在抖音直播中迅速提升等级&#xff0c;成为众多用户探讨的话题。在这篇文章中&#xff0c;我们将深入探讨抖音直播等级的升级机制、好处以及一些实用的技巧&#xff0c;助你在抖…

三、C语言常见概念

目录 1. C语言是什么&#xff1f; 3. 编译器的选择 3.1 编译和链接 3.2 编译器的对比 6. main函数 7. printf 和 库函数 8. 关键字介绍 8.1 什么是预编译&#xff1f; 8.2 static 的关键词作用&#xff1f; 8.3 const 的作用 8.4 voliate 的作用 8.5 typedef 的作用…

吉他初学者学习网站搭建系列(5)——如何做一个在线节拍器

文章目录 背景实现TransportLoop代码 在线尝试 背景 我们看吉他谱时&#xff0c;经常看到拍号&#xff0c;例如6/8。它的含义是一拍是一个八分音符&#xff0c;一小节有六拍。四分音符的时长是一秒&#xff0c;即60拍/分钟。基于这样的背景知识&#xff0c;我们就可以根据一些…

基于springboot的校园二手市场

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

vFW搭建IRF

正文共&#xff1a;2328字 40图&#xff0c;预估阅读时间&#xff1a;5 分钟 IRF&#xff08;Intelligent Resilient Framework&#xff0c;智能弹性架构&#xff09;技术通过将多台设备连接在一起&#xff0c;虚拟化成一台设备&#xff0c;集成多台设备的硬件资源和软件处理能…

【网络安全】-常见的网站攻击方式详解

文章目录 介绍1. SQL 注入攻击攻击原理攻击目的防范措施 2. 跨站脚本攻击&#xff08;XSS&#xff09;攻击原理攻击目的防范措施 3. CSRF 攻击攻击原理攻击目的防范措施 4. 文件上传漏洞攻击原理攻击目的防范措施 5. 点击劫持攻击原理攻击目的防范措施 结论 介绍 在数字时代&a…