UData+StarRocks在京东物流的实践 | 京东物流技术团队

1 背景

数据服务与数据分析场景是数据团队在数据应用上两个大的方向,行业内大家有可能会遇到下面的问题:

1.1 数据服务

  • 烟囱式开发模式:每来一个需求开发一个数据服务,数据服务无法复用,难以平台化,技术上无法积累
  • 服务维护难度大:当开发了大量数据服务后,后期维护是大问题,尤其是618、双11大促期间,在没有统一的监控、限流、灾备方案的情况下一个人维护上百个数据服务是一件很痛苦的事,也造成了很大的安全隐患
  • 业务需求量大:数据开发的同学常常会被大量重复枯燥的数据服务开发束缚,大量的时间投入在业务数据服务开发中

1.2 数据分析

  • 找数据难:用户难以找到自己想要,即便找到名称相近的指标或数据,由于指标口径不明确也不统一也无法直接使用
  • 用数难:由于目前数据分布在各个系统中,用户无法用一个系统满足所有的数据需求。特别是一线运营人员要通过每个从各个系统导出大量Excel的方式做数据分析,费时费力,同时也造成数据安全隐患
  • 查询慢:用传统的Olap引擎,用户跑SQL往往需要几分钟才出结果,大大降低了分析人员的效率。
  • 查询引擎不统一:系统可能有多种查询引擎组成,每一种查询引擎都有自己的DSL,增大了用户的学习成本,同时需要跨多数据源查询也是一件很不方便的事。异构查询引擎带来的另一个问题是形成了数据孤岛,各系统间的数据之间无法相互关联
  • 数据实时更新:传统离线T+1方式数据更新已经无法满足当今的实时化运营的业务诉求,这就要求系统需要到达秒级别的延迟

除了以上问题,数据服务和数据分析系统也是无法统一,分析产生的数据结果往往是离线的,需要额外开发数据服务,无法快速转化为线上服务赋能外部系统,使得分析和服务之间难以快速形成闭环。而且在以往数据加工过程中存储往往只考虑了当时的需求,当后续需求场景扩展,最初的存储引擎可能不适用,导致一份数据针对不同的场景要存储到不同的存储引擎,带来数据一致性隐患和成本浪费问题。

2 基于StarRocks 的数据服务分析一体化实践

基于以上这些业务痛点京东物流运营数据产品团队研发了服务分析一体化系统——UData(Universal Data),UData系统是以StarRocks引擎为技术基础的实现的。UData把数据指标生成的过程抽象出来,用配置的方式低代码化生成数据服务,大大降低的开发复杂性和难度,让非研发同学也可以根据自己的需求配置和发布自己数据服务,指标的开发时间由之前的一两天缩短为30分钟,大大解放了研发力。平台化的指标管理体系和数据地图的功能,让用户更加直观和方便地查找与维护指标,同时也让指标复用变成可能。

在数据分析方面,我们用基于StarRocks的联邦查询方案打造了UData统一查询引擎,解决了查询引擎不统一和数据孤岛问题,同时StarRocks提供了强悍的数据查询性能,无论是大宽表还是多表关联查询性能都十分出色。StarRocks提供数据实时摄入的能力和多种实时数据模型,可以很好的支持数据实时更新场景。UData系统把分析和服务结合在一起,让分析和服务不再是分割的两个过程,用户分析出有价值的数据后可以立即生成对应的数据服务,让服务分析快速闭环。

数据流程架构图:

改造前的架构:


图1 改造前架构图

改造前实时数据由JDQ(京东日志消息队列,类似Kafka)和JMQ导入Flink做实时数据加工,加工后数据写入Clickhouse和ElasticSearch,为数据服务和数据分析提供Olap查询服务。离线数据由Spark做个数仓层级加工,APP层数据会同步至Mysql或Clickhouse做Olap查询。此架构中,在数据服务和数据分析是两个分隔的部分,分析工具由于要跨多数据源和不同的查询语言做数据分析比较困难的,数据服务也是烟囱式开发。

改造后的架构:


图2 改造后的架构

改造后,我们在数据存储层引入了StarRocks,StarRocks提供了极速的单表和多表查询能力,同时以StarRocks为基础我们打造了统一查询引擎,统一查询引擎根据京东的业务特点增加数据源和聚合下推等功能,UData在统一查询引擎的基础上统一了数据分析和数据服务功能。

打造一款数据服务分析一体化系统对查询引擎有比较高的要求,需要同时满足:极速的查询性能、支持联邦查询、实时与离线存储统一。基于这三点要求,下面我们就StarRocks极速的查询性能的原因、我们对联邦查询的改造、实时场景的实践展开讨论。

2.1 StarRocks极速的查询性能的原因

极速查询的单表查询:

StarRocks在极速查询方面上做了很多,下面着重介绍下面四点:

  1. 向量化执行:StarRocks实现了从存储层到查询层的全面向量化执行,这是SR在速度上优势的基础。向量化执行充分发挥了CPU的处理能力。全面向量化引擎按照列式的方式组织和处理数据。StarRocks的数据存储、内存中数据的组织方式,以及SQL算子的计算方式,都是列式实现的。按列的数据组织也会更加充分的利用CPU的Cache,按列计算会有更少的虚函数调用以及更少的分支判断从而获得更加充分的CPU指令流水。另一方面,StarRocks的全面向量化引擎通过向量化算法充分的利用CPU提供的SIMD指令。这样StarRocks可以用更少的指令数目,完成更多的数据操作。经过标准测试集的验证,StarRocks的全面向量化引擎可以将执行算子的性能,整体提升3—10倍。
  2. 物化视图加速查询:在实际分析场景中,我们经常遇到分析上百亿的大表情况,尽管SR性能优异但数据量过大查询速度还是有影响的,此时在用户经常聚合的维度加上了物化视图,在不用改变查询语句的情况下查询速度提升10倍以上,SR智能化的物化视图可以让请求自动匹配视图,无需手动查询视图。
  3. CBO:CBO(Cost-based Optimizer ) 优化器采用 Cascades 框架,使用多种统计信息来完善成本估算,同时补充逻辑转换(Transformation Rule)和物理实现(Implementation Rule)规则,能够在数万级别执行计划的搜索空间中,选择成本最低的最优执行计划。
  4. 自适应低基数优化:StarRocks可以自适的根据数据分布,对低基数的字符串类型的列构建一张全局字典,用Int类型做存储和查询,使得内存开销更小,有利于SIMD指令执行,加快了查询速度。与此对应Clickhouse也有LowCardinality方式优化,只是需要在建表时候需要声明,使用起来会麻烦一些。

极速的多表关联:

在实时数据分析场景中只满足单表极速查询是不够的,目前为了加速查询速度行业内习惯于把多张表打成一张大宽表,大宽表虽随度快,但是带来的问题是极其不灵活,实时数据加工层是用flink将多表 join成一张表写入大宽表,当业务方想修改或增加分析维度时往往数据开发周期过长,数据加工完成后发现已经错过了分析最佳时机。所以需要更灵活的数据模型,比较理想的方法是把大宽表模式退归回星型模型或者雪花模型。在此场景下查询引擎对多表数据关联查询的性能成了关键,以往clickhouse以大宽表为主,多表联查情况下无法保证查询相应时间,甚至有很大几率出现OOM。SR很好解决了这个问题,大表join性能提升3~5倍以上,成为星型模型分析利器。CBO(Cost-based Optimizer )是多表关联极致性能关键,同时StarRocks 支持Broadcost Join、Shuffle Join、Bucket shuffle Join、Colocated Join、Replicated Join等多种join方式,CBO可以智能的选择join顺序和join方式。

2.2 对StarRocks联邦查询的改造

在存储层层由于需求、场景、历史等原因是很难做到真正统一的存储的,在过去的数据服务开发中由于存储层不统一、数据库查询语法不同,开发基本是烟囱式开发,已开发的指标很难复用,也很难管理大量的已开发指标。联邦查询可以很好的解决这个问题,使用统一的查询引擎屏蔽了不同olap的引擎的专有DSL,大大提升了开发效率和学习成本,同时可以用ONE SQL方式整合来自不同数据源的指标形成新的指标,从而提高了指标的复用性。StarRocks外表扩展功能让它具备了实现联邦查询的基础,但细节上我们有一些自己的业务需求。

StarRocks在联邦查询上支持了多种外表如ES、Mysql、hive、数据湖等,已经有了很好的联邦查询的基础。不过在实际的业务场景需求中,一些聚合类的查询需要从外部数据源拉取数据再聚合,而且这些数据源自身的聚合性能也不错,这反而增加了查询时间。我们的思路是让这部分擅长聚合的引擎自己做聚合,把聚合操作下推到外部引擎,目前符合这个优化条件的引擎有:Mysql、ElasticSearch、Clickhouse。同时为了兼容更多的数据源,我们还增加了 JSF(京东内部RPC服务)/HTTP 数据源,下面简单介绍下这两部分:

1.Mysql、ElasticSearch的聚合下推功能

现在StarRocks对于聚合外部数据源的方案是拉取谓词下推后的全量的数据,虽然谓词下推后已经过滤一部分数据但是把数据拉取到StarRocks再聚合是一个很重的操作,导致聚合时间不理想。我们的思路是下推聚合操作,让外部表引擎自己做聚合,节省数据拉取时间,同时本地化聚合效率更高。聚合下推的优化在某些场景下有10倍以上的性能提升。


图3 物理计划优化图

在物理执行计划层我们做了再次优化,当遇到ES、Mysql、clickhouse的聚合造作时,会把ScanNode+AGGNode的执行计划优化为QueryNode,QueryNode为一种特殊的ScanNode,与普通的ScanNode区别为QueryNode会直接把聚合查询请求直接发送到对应外部引擎,而不是scan数据后在本地执行聚合。其中EsQueryNode我们会在FE端就生成ES查询的DSL语句,直接下推到BE端查询 。在同时在BE端我们实现了EsQueryNode 和MysqlQueryNode这两种QueryNode。

2.增加 JSF(京东内部RPC服务)/HTTP 数据源

数据服务中可能会涉及到整合外部数据服务和复用原先已开发指标的场景,我们的思路是把JSF(京东内部RPC服务)/HTTP也抽象成StarRocks的外部表,用户可以通过SQL像查询数据库一样访问数据服务,这样不仅可以复用老的指标还可以结合其他数据源的数据生成新的复合指标。我们在FE和BE端同时增加JSF和HTTP 两种ScanNode。

2.3 实时场景的实践

京东物流实时数据绝大多数属于更新场景,运单类数据会根据业务状态的改变而改变,下面介绍我们在生产中的三种实时更新方案:

方案一:基于ES的实时更新方案

原理如下:

  1. 内部先get获取document
  2. 内存中更新老的document
  3. 将老的document标记为deleted
  4. 创建新的document

优点:

  • 支持数据实时更新,可以做到partail update

缺点:

  • ES 聚合性能较差,当出现多个聚合维度时查询时间会很长
  • ES 的DSL语法增加了开发工作,虽然ES可以支持简单SQL但是无法满足复杂的业务场景
  • 旧数据清理难,当触发compaction物理删除标记位文档的时候会触发大量的io操作,如果此时写入量又很大,严重影响读写性能

方案二:基于clickhouse实现准实时的方案

原理如下:

  1. 使用ReplacingMergeTree 的方式实现
  2. 将Primary key相同的数据分发到同一个数据节点的同一个数据分区
  3. 查询时做Merge on read ,合并多版本数据读取

优点:

  • clickhouse 写入基本是append写入,所以写入性能强

缺点:

  • 由于读取时做版本合并,查询和并发性能较差
  • clickhouse的join性能不佳,会造成数据孤岛问题

方案三:基于StarRocks主键模型的实时更新方案

原理:StarRocks收到对某行的更新操作时,会通过主键索引找到该条记录的位置,并对其标记为删除,再插入一条新的记录。相当于把Update改写为Delete+Insert。StarRocks收到对某行的删除操作时,会通过主键索引找到该条记录的位置,对其标记为删除。这样在查询时不影响谓词下推和索引的使用, 保证了查询的高效执行。查询速度比Merge on read方式快5-10倍。

优点:

  • 只有唯一版本数据,查询性能强,实时更新
  • 虽然Delete+Insert在写入性能有轻微损失,但总体上还是十分强悍
  • Mysql协议,使用简单

缺点:

  • 目前版本在数据删除上有一些限制,无法使用delete语句进行删除,新版本中社区会增加此功能

实时更新场景总的来说有以下几种方案:

  1. Merge on read :StarRocks 的聚合、Unique模型和Clickhouse的ReplacingMergeTree、AggregatingMergeTree都是用的此方案。此方案特点是append方式写入性能好,但是查询时需要合并多版本数据导致查询性能不佳。适合数据查询性能要求不高的实时分析场景。
  2. Copy on write :目前一些数据湖系统如hudi、iceberg都有copy on write 的方案现实,此方案原理是当有更新数据后,会合并新老数据并重写一份新的文件替换掉老文件,查询时无需做merge操作,所以查询性能很好。带来的问题是写和数据合并的操作很重,所以此方案不适合实时性强的写入场景。
  3. Delete and insert:此方案是upsert 方案,通过内存中的主键索引定位要更新的行,标记删除然后插入。在牺牲了部分写入性能的情况下,带来查询上数倍于Merge on read 的提升,同时也提升了并发性能。

实时更新在Olap领域一直是一个技术难点,以往的解决方案很难同时具备写入性能好、读取性能好、使用简单这几个特性。StarRocks的Delete and insert方式目前更接近于理想的方案,在读写方面都有很优秀的性能,支持Mysql协议使用上简单友好。同时离线分析Udata也是用StarRocks完成,让我们实现了实时离线分析一体化的目标。

3 后续方向

数据湖探索:批流一体已经成为今后发展的大趋势,数据湖作为批流一体的存储载体已经成为标准,我们以后大方向也必然是批流一体。目前批流一体中一个大痛点问题是没有一种查询引擎可以在数据湖上做极速查询,后期我们会借助SR打造在湖上的极速分析能力,让批流一体不只停留在计算阶段。
架构图如下:

图4 后期计划架构图

  • 实时数据存储统一:目前系统中还是有多套实时存储方案,运维成本还是相当高,后期我们会逐步把ES、Clickhouse替换为StarRocks,在实时层做到存储统一。我们也很期待StarRocks后期关于主键模型支持detele语句方式删除数据的Feature,这个Feature可以简化目前的数据清除问题。
  • 支持更多的数据源:今后我们还会支持更多的数据源,如Redis、Hbase等kv类型的Nosql数据库,增强SR的点查能力。
  • StarRocks集群间的联邦查询:在实际生产中很难做到只用一个大集群,特别是当实时有大量实时写入的情况,比较安全的做法是拆分不同的小集群,当一个集群出问题时不会影响其他业务。但是带来的问题是,集群间可能又会变为数据孤岛,即便把StarRocks伪装成Mysql创建外表,但也需要工具去同步各个集群的表结构等信息,管理起来费时费力,后续我们也会和社区讨论如何实现集群间的联邦功能。

作者:京东物流 张栋 贺思远

来源:京东云开发者社区 自猿其说Tech 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/210769.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java项目日常运维需要的文档资料

一、前言 java项目开发完成,部署上线,进入项目运维阶段,日常工作需要准备哪些资料和文档?当项目上线后,运行一段时间,或多或少会遇到一些运维上的问题,比如服务器磁盘饱满,服务器CPU&#xff0…

也可Adobe Animate

Animate CC 由原Adobe Flash Professional CC 更名得来,2015年12月2日:Adobe 宣布Flash Professional更名为Animate CC,在支持Flash SWF文件的基础上,加入了对HTML5的支持。并在2016年1月份发布新版本的时候,正式更名为…

Java 设计模式系列:代理模式

文章目录 介绍静态代理基本介绍应用实例静态代理优缺点 动态代理基本介绍JDK 中生成代理对象的 API Cglib 代理基本介绍实现步骤 介绍 1)代理模式:为一个对象提供一个替身,以控制对这个对象的访问。即通过代理对象访问目标对象 2&#xff09…

Java链接数据库

本文介绍的是Java链接数据库中的JDBC操作,JDBC虽然现在用的不多,但面试的时候会问道。需要有相应的了解。下面以链接MySQL为例子。 JDBC 什么jdbc Java DataBase Connectivity是一种用于执行SQL语句的Java API,它由一组用Java语言编写的类和…

服务器中启动和停止项目

服务器中启动和停止项目 一、前言二、使用命令启动和关闭项目1、启动项目2、停止项目 三、使用可执行脚本启动和关闭项目1、启动项目2、停止项目 一、前言 在服务器上部署项目,一般就是将项目挂在后台,如果是微服务首选docker-compose,可以看…

2022年高校大数据挑战赛A题工业机械设备故障预测求解全过程论文及程序

2022年高校大数据挑战赛 A题 工业机械设备故障预测 原题再现: 制造业是国民经济的主体,近十年来,嫦娥探月、祝融探火、北斗组网,一大批重大标志性创新成果引领中国制造业不断攀上新高度。作为制造业的核心,机械设备在…

一种新的基于物理的AlGaN/GaN HFET紧凑模型

标题:A new physics-based compact model for AlGaN/GaN HFETs (IEEE MTT-S International Microwave Symposium) 摘要 摘要 - 针对AlGaN/GaN HFET,提出了一种无拟合参数的物理解析模型。对于非饱和操作,建立了两个接入区和栅极下方I-V特性的…

关于队列的简单理解

1.队列(Queue) 1.1 关于队列 队列 :只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表, 队列具有先进先出 FIFO(First In First Out)的操作特性(队列是个接口); 入队列&#x…

CMake中的CACHE关键字

2023年12月5日,周二晚上 在 CMake 中,CACHE 关键字用于在变量定义时将其值缓存起来,以便在后续的 CMake 运行中重用。这对于在多次构建过程中保持变量的持久性和一致性非常有用。 当使用 CACHE 关键字定义一个变量时,CMake 将会为…

【藏经阁一起读】(78)__《Apache Tomcat 的云原生演进》

【藏经阁一起读】(78) __《Apache Tomcat 的云原生演进》 目录 __《Apache Tomcat 的云原生演进》 一、读后感 二、文章知识点摘要 2.1、Tomcat的技术内幕和在喜马拉雅的实践 2.2、GraalVM static compilation in web container application&…

我最喜欢的白版应用,AI加持的新功能开源!强烈推荐

Excalidraw 把他们的文本到图表的功能开源了 Excalidraw是一个虚拟白板应用,专门用于绘制类似手绘的图表。它提供了一个无限的、基于画布的白板,具有手绘风格,支持多种功能。 之前我分享的:72张PNG,图解机器学习 里面…

对小程序的初了解

WXML和HTML的区别 标签名称不同 HTML&#xff1a;div、a、span、img WXML&#xff1a;view、text、image、navigator 属性节点不同 <a href"#">超链接</a> <navigator url"/pages/home/home"></navigator> 提供了类似vue的…

Unity WebGL通过URL的形式接收参数执行初始化

参考博客&#xff1a; http://t.csdnimg.cn/QnfhK 问题背景&#xff1a; 需要在外面的网页指定WebGL的打开初始化逻辑。 步骤&#xff1a; 1.配置jslib&#xff0c;用文本文件创建即可&#xff0c;"__Internal.jslib"。 2.加入一段代码&#xff1a; mergeInto(…

口袋参谋:如何选取标题中核心关键词?这招超简单!

​在淘宝爆款的标题中&#xff0c;关键词的选取是很重要的&#xff0c;买家通过搜索关键词来查找需要的商品&#xff0c;所以标题组合和优化的难度在于关键词的选取&#xff0c;让每个关键词恰到好处地发挥作用&#xff0c;带来更多更精准的流量。 1、选词逻辑 ①相关性 这是…

java使用poi读写excel(处理上下标和科学计数法)

Background 要读写如下图所示的excel&#xff0c;符号和单位中包含上下标&#xff0c;在读写时需要特殊处理&#xff1b;取值列中是科学计数法&#xff0c;读写时需要特殊处理&#xff1b;excel中包含多个sheet&#xff0c;读的时候把所有sheet的数据读出来&#xff0c;写的时候…

利用ElementUI配置商品的规格参数

需求&#xff1a;商品可以设置多个规格&#xff0c;需要自动生成对应规格的所有组合&#xff0c;并设置该规格商品的图片、价格、库存等数据。 <template><div class"sku-list"><template v-if"!disabled"><div class"sku-list-…

Leetcode每日一题学习训练——Python3版(到达首都的最少油耗)

版本说明 当前版本号[20231205]。 版本修改说明20231205初版 目录 文章目录 版本说明目录到达首都的最少油耗理解题目代码思路参考代码 原题可以点击此 2477. 到达首都的最少油耗 前去练习。 到达首都的最少油耗 ​ 给你一棵 n 个节点的树&#xff08;一个无向、连通、无环…

使用C语言创建高性能爬虫ip网络

之前写的python和GO语言的爬虫ip池的文章引起很大反响&#xff0c;这次我将以C语言来创建爬虫IP池&#xff0c;但是因为其复杂性&#xff0c;可能代码并非完美。但是最终也达到的想要的效果。 因为在C语言中创建代理IP池可能会比较复杂&#xff0c;且C语言并没有像Python那样的…

HarmonyOS应用开发者基础认证考试(98分答案)

基于最近大家都在考这个应用开发者基础认证考试&#xff0c;因此出了一期&#xff0c;一样复制word里面搜索做&#xff0c;很快&#xff0c;当然good luck 判断题 Ability是系统调度应用的最小单元,是能够完成一个独立功能的组件。一个应用可以包含一个或多个Ability。 正确(Tr…

批量创建/更新外协工序采购信息记录

批量创建/更新没有物料号的外协工序采购信息记录。 执行事务代码ZME1X_OP,下载模板。(此程序可同时用于外协工序的创建和修改)创建外协工序的时候如果是新建则不需要输入采购信息记录号,如果是要更新外协工序价格,则必须输入采购信息记录号。价格单位默认为‘1’,货币代码…