imutils库介绍及安装学习

目录

介绍

本机环境

安装

常用函数

使用方法

图像平移

图像缩放

图像旋转

骨架提取

通道转换

OPenCV版本的检测

综合测试


目录

介绍

本机环境

安装

常用函数

使用方法

图像平移

图像缩放

图像旋转

骨架提取

通道转换

OPenCV版本的检测


介绍

   imutils 是一个用于图像处理计算机视觉任务的 Python 工具包。它提供了一系列方便实用的函数,可以简化常见的图像处理任务,imutils 库的发展始于 2015 年,作者是 Adrian Rosebrock。实际上,imutils是在OPenCV基础上的一个简单封装从而达到更为简结的调用OPenCV接口的目的,来轻松的实现图像的平移,旋转,缩放,骨架化等一系列的操作。

本机环境

windows10  64位 企业版

python 3.6.8(X64)

imutils == 0.5.3

opencv-python==3.4.2.16

库文件讲解及下载地址:https://github.com/PyImageSearch/imutils 

安装

pip install imutils

        在安装前应确认已安装numpy,scipy,matplotlib和opencv,如果出现缺失包错误,可以使用下面安装命令,会把所有包安装:

pip install NumPy SciPy opencv-python matplotlib imutils

如果安装速度过慢,可以使用 国内镜像连接下载来提高速度:

pip install imutils -i https://pypi.tuna.tsinghua.edu.cn/simple

常用函数

1.resize(image, width=None, height=None, inter=cv2.INTER_LINEAR):调整图像大小。可以通过指定 width 或 height 来设置新的图像尺寸,也可以同时指定两者。inter 参数用于指定插值方法,默认为 cv2.INTER_LINEAR

2.rotate(image, angle):旋转图像。angle 参数指定旋转角度,正值表示逆时针旋转,负值表示顺时针旋转。

3.translate(image, x, y):平移图像。image参数是要移动的图像,x  y 参数指定在 x 和 y 轴上的平移距离。

4.grab_contours(cnts):解决 OpenCV 版本兼容性问题的函数,用于从 cv2.findContours() 返回的结果中提取轮廓。

5.rotate_bound(image, angle):安全地旋转图像,确保旋转后的图像完整。

6.auto_canny(image, sigma=0.33):自动计算 Canny 边缘检测的阈值。sigma 参数用于控制阈值的高低。

7.is_cv2() 和 is_cv3():用于检测当前使用的 OpenCV 版本。

8.in_range(image, lower, upper):将图像中的像素值限制在给定的范围内。

        这些函数可以组合使用,以便进行更复杂的图像处理任务。例如,可以使用 resize() 函数将图像调整为指定大小,然后使用 rotate() 函数对图像进行旋转,最后使用 translate() 函数平移图像。

使用方法

图像平移

        OpenCV中也提供了图像平移的实现,要先计算平移矩阵,然后利用仿射变换实现平移,在imutils中可直接进行图像的平移,相对于原来的cv,使用imutiles可以直接指定平移的像素,不用构造平移矩阵。

import numpy as np
import cv2 as cv
import imutils
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号img = cv.imread('image1.jpg')  # 更改图片地址
translated = imutils.translate(img,100,50)  # 平移函数plt.figure()
plt.subplot(121)
plt.imshow(img[:,:,::-1])  # img[:,:,::-1]转换是为了转回RGB格式,这样才可以正常显示彩色图像
plt.title('原图')
plt.subplot(122)
plt.imshow(translated[:,:,::-1])
plt.title('平移结果')
plt.show()

图像缩放

        图片的缩放在OPenCV中要注意确保保持宽高比。而在imutils中自动保持原有图片的宽高比,只指定宽度weight和height即可,缩放函数:imutils.resize(img,width=100)

import numpy as np
import cv2 as cv
import imutils
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号img = cv.imread('image1.jpg')
# 说明一般如果有width参数,就会安装width参数进行缩放,不会理会height参数,如果两个参数不成比例,也是安装width进行缩放
resized = imutils.resize(img,width=100)  # 指定宽度,会自动计算相应比例高度,还有参数heightprint('原图大小:',img.shape)
print('缩放后大小', resized.shape)
plt.figure()
plt.subplot(121)
plt.imshow(img[:,:,::-1])
plt.title('原图')
plt.subplot(122)
plt.imshow(resized[:,:,::-1])
plt.title('缩放图')
plt.show()

图像旋转

        在OpenCV中进行旋转时使用的是仿射变换,在这里图像旋转方法是imutils.rotate(),跟2个参数,第一个是图片数据,第二个是旋转的角度,旋转是朝逆时针方向。同时imutils还提供了另一个相似的方法, rotate_round(),它就是按顺时针旋转的。

import numpy as np
import cv2 as cv
import imutils
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号image = cv.imread('image1.jpg')
# 逆时针旋转
rotated = imutils.rotate(image, 90)                     
# 顺时针旋转
rotated_round = imutils.rotate_bound(image, 90)         # 画图              
plt.figure(figsize=[10, 10])
plt.subplot(1,3,1)
plt.imshow(img[:,:,::-1])
plt.title('原图')
plt.axis("off")
plt.subplot(1,3,2)
plt.imshow(rotated[:,:,::-1])
plt.title('逆时针旋转90度')
plt.axis("off")
plt.subplot(1,3,3)
plt.imshow(rotated_round[:,:,::-1])
plt.title('顺时针旋转90度')
plt.axis("off")
plt.show()

骨架提取

        骨架提取(边缘提取),是指对图片中的物体进行拓扑骨架(topological skeleton)构建的过程,imutils提供的方法是skeletonize(),第二个参数是结构参数的尺寸(structuring element),相当于是一个粒度,越小需要处理的时间越长。注意,不是所有图片都能求出骨架

import cv2 as cv
import imutils
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号# 1 图像读取
image2 = cv.imread('earth.png')
# 2 灰度化
gray = cv.cvtColor(image2, cv.COLOR_BGR2GRAY)
# 3 骨架提取
skeleton = imutils.skeletonize(gray, size=(7, 7))# 4 图像展示
plt.figure()
plt.subplot(121),plt.imshow(image2[:,:,::-1]),plt.title('原图')plt.subplot(122),plt.imshow(skeleton,cmap="gray"),plt.title('骨架提取结果')  # 显示灰度图要声明 grayplt.show()

通道转换

在OpenCV的Python绑定中,图像以BGR顺序表示为NumPy数组。使用该cv2.imshow功能时效果很好。但是,如果打算使用Matplotlib,该plt.imshow函数将假定图像按RGB顺序排列。调用cv2.cvtColor解决此问题,也可以使用opencv2matplotlib便捷功能。

img = cv.imread("lion.jpeg")
plt.figure()
plt.imshow(imutils.opencv2matplotlib(img))

OPenCV版本的检测

        OpenCV 4发布之后,随着主要版本的更新,向后兼容性问题尤为突出。在使用OPenCV时,应检查当前正在使用哪个版本的OpenCV,然后使用适当的函数或方法。在imutils中的is_cv2()is_cv3()is_cv4()是可用于自动确定当前环境的OpenCV的版本简单的功能。

print("OPenCV版本: {}".format(cv2.__version__))

综合测试

        融合以上函数,通过修改代码中的flag对应的不同数值可以得到不同的函数演示效果。代码和素材下载地址如下:https://mp.csdn.net/mp_download/manage/download/UpDetailed

import numpy as np
import cv2
import imutilsif __name__ == '__main__':img = cv2.imread('./image/apple.png')logo = cv2.imread('./image/3.png')flag = 5if flag ==0:# 把dir路径下的所有图片名称变成一个列表,支持dir文件夹下多个子文件夹图片名称提取from imutils import pathsdir = r'.\image'imagePaths = list(paths.list_images(dir))print(imagePaths)if flag ==1:#查看imutils的相关信息print(dir(imutils))if flag ==2:#图像旋转for angle in range(0,360,90): #rotate the image and display itrotated_im = imutils.rotate(img,angle=angle)cv2.imshow("Angle=%d" % (angle),rotated_im)cv2.waitKey()cv2.destroyAllWindows()if flag ==3:# 图片缩放for width in (400,300,200,100):# resize the image and display itresized = imutils.resize(img,width=width)cv2.imshow("Width=%dpx"%(width),resized)cv2.waitKey()cv2.destroyAllWindows()if flag ==4:#图像平移# translate the image x=25 pixels to the right and y = 75 pixels uptranslated = imutils.translate(img,25,-75)cv2.imshow('translate', translated)cv2.waitKey()cv2.destroyAllWindows()if flag ==5:#白图像黑背景画出图像轮廓结构#skeletonize the imagegray = cv2.cvtColor(logo,cv2.COLOR_BGR2GRAY)skeleton = imutils.skeletonize(gray,size=(3,3))cv2.imshow("Skeleton",skeleton)cv2.waitKey()cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/211795.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我不是DBA之慢SQL诊断方式

最近经常遇到技术开发跑来问我慢SQL优化相关工作,所以干脆出几篇SQL相关优化技术月报,我这里就以公司mysql一致的5.7版本来说明下。 在企业中慢SQL问题进场会遇到,尤其像我们这种ERP行业。 成熟的公司企业都会有晚上的慢SQL监控和预警机制。…

面试常问的dubbo的spi机制到底是什么?(下)

前文回顾 前一篇文章主要是讲了什么是spi机制,spi机制在java、spring中的不同实现的分析,同时也剖析了一下dubbo spi机制的实现ExtensionLoader的实现中关于实现类加载以及实现类分类的源码。 一、实现类对象构造 看实现类对象构造过程之前,先…

量子力学:探索微观世界的奇妙之旅

量子力学:探索微观世界的奇妙之旅 引言 在21世纪初,我们逐渐进入了一个以信息技术为主导的新时代。在这个时代,量子力学作为一门研究物质世界微观结构、粒子间相互作用以及能量与信息转换的基础科学,对我们的生活产生了深远的影响…

http和https的区别有哪些

目录 HTTP(HyperText Transfer Protocol) HTTPS(HyperText Transfer Protocol Secure) 区别与优势 应用场景 未来趋势 当我们浏览互联网时,我们经常听到两个常用的协议:HTTP(HyperText Tra…

【MATLAB源码-第96期】基于simulink的光伏逆变器仿真,光伏,boost,逆变器(IGBT)。

操作环境: MATLAB 2022a 1、算法描述 1. 光伏单元(PV Cell) 工作原理:光伏单元通过光电效应将太阳光转换为直流电。它们的输出取决于光照强度、单元温度和负载条件。Simulink建模:在Simulink中,光伏单元…

编程怎么学才能快速入门,分享一款中文编程工具快速学习编程思路,中文编程工具之分组框构件简介

一、前言: 零基础自学编程,中文编程工具下载,中文编程工具构件之扩展系统菜单构件教程 编程系统化教程链接 https://jywxz.blog.csdn.net/article/details/134073098?spm1001.2014.3001.5502 给大家分享一款中文编程工具,零基础…

【设计模式-4.3】行为型——责任链模式

说明:本文介绍设计模式中行为型设计模式中的,责任链模式; 审批流程 责任链模式属于行为型设计模式,关注于对象的行为。责任链模式非常典型的案例,就是审批流程的实现。如一个报销单的审批流程,根据报销单…

Matlab数学建模详解之发电机的最佳调度实现

🔗 运行环境:Matlab、Python 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥 推荐专栏:《算法研究》 #### 防伪水印——左手の明天 #### 💗 大家好🤗&am…

从零构建属于自己的GPT系列3:模型训练2(训练函数解读、模型训练函数解读、代码逐行解读)

🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1:数据预处理 从零构建属于自己的GPT系列2:模型训…

Java 中 char 和 Unicode、UTF-8、UTF-16、ASCII、GBK 的关系

Unicode、UTF-8、UTF-16、UTF-32、ASCII、GBK、GB2312、ISO-8859-1 它们之间是什么关系? 关于这几种字符编码的关系,经过各种资料研究,总结如下图(请右键在新标签页打开查看或者下载后使用看图工具放大查看): 我们应该从历史的顺序看待这些字符编码的由来: ASCII(早期…

Python之random和string库学习

一、random库 random是python中用来生存随机数的库。具体用法如下: 1、生成一个0到1随机浮点数 random.random() 2、生成一个a到b的随机浮点数 random.uniform(1,2) 3、生成一个a到b之间的整数 random.randint(a,b) 4、随机从序列元素中取出一个值,…

Hazelcast分布式内存网格(IMDG)基本使用,使用Hazelcast做分布式内存缓存

文章目录 一、Hazelcast简介1、Hazelcast概述2、Hazelcast之IMDG3、数据分区 二、Hazelcast配置1、maven坐标2、集群搭建(1)组播自动搭建 3、客户端4、集群分组5、其他配置 三、Hazelcast分布式数据结构1、IMap2、IQueue:队列3、MultiMap4、I…

LINUX:如何以树形结构显示文件目录结构

tree tree命令用于以树状图列出目录的内容。 第一步,先安装tree这个包 sudo apt-get install tree 第二步,在指定文件目录输入下面命令,7代表7级子目录 tree -L 7 第三步,效果图 第四步,拓展学习 颜色显示 tree -C显…

mysql中除了InnoDB以外的其它存储引擎

参考资料:https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html MyISAM存储引擎 https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html MyISAM 存储引擎是基于比较老的ISAM存储引擎(ISAM已经不再可用)&#xff…

09、pytest多种调用方式

官方用例 # content of myivoke.py import sys import pytestclass MyPlugin:def pytest_sessionfinish(self):print("*** test run reporting finishing")if __name__ "__main__":sys.exit(pytest.main(["-qq"],plugins[MyPlugin()]))# conte…

正则表达式(5):常用符号

正则表达式(5):常用符号 小结 本博文转载自 在本博客中,”正则表达式”为一系列文章,如果你想要从头学习怎样在Linux中使用正则,可以参考此系列文章,直达链接如下: 在Linux中使用正…

AWS re:Invent 2023-亚马逊云科技全球年度技术盛会

一:会议地址 2023 re:Invent 全球大会主题演讲 - 亚马逊云科技从基础设施和人工智能/机器学习创新,到云计算领域的最新趋势与突破,倾听亚马逊云科技领导者谈论他们最关心的方面。https://webinar.amazoncloud.cn/reInvent2023/keynotes.html北京时间2023年12月1日00:30-02:…

用23种设计模式打造一个cocos creator的游戏框架----(三)外观模式模式

1、模式标准 模式名称:外观模式 模式分类:结构型 模式意图:为一组复杂的子系统提供了一个统一的简单接口。这个统一接口位于所有子系统之上,使用户可以更方便地使用整个系统。 结构图: 适用于: 当你想为…

【FPGA图像处理实战】- VGA接口与时序详解

VGA接口是一个很有历史的接口,全称为Video Graphics Array(VGA)视频图形阵列,是IBM公司在1987年随着PS/2一起推出的使用模拟信号的一种视频传输标准。 时至今日,这个接口依然还在大量使用,因为这个接口具有成本低、结构简单、应用灵活的优点。 一、VGA接口与电路原理图…

这些Java并发容器,你都了解吗?

文章目录 前言并发容器1.ConcurrentHashMap 并发版 HashMap示例 2.CopyOnWriteArrayList 并发版 ArrayList示例 3.CopyOnWriteArraySet 并发 Set示例 4.ConcurrentLinkedQueue 并发队列 (基于链表)示例 5.ConcurrentLinkedDeque 并发队列 (基于双向链表)示例 6.ConcurrentSkipL…