这些Java并发容器,你都了解吗?

文章目录

      • 前言
      • 并发容器
        • 1.ConcurrentHashMap 并发版 HashMap
          • 示例
        • 2.CopyOnWriteArrayList 并发版 ArrayList
          • 示例
        • 3.CopyOnWriteArraySet 并发 Set
          • 示例
        • 4.ConcurrentLinkedQueue 并发队列 (基于链表)
          • 示例
        • 5.ConcurrentLinkedDeque 并发队列 (基于双向链表)
          • 示例
        • 6.ConcurrentSkipListMap 基于跳表的并发 Map
          • 示例
        • 7.ConcurrentSkipListSet 基于跳表的并发 Set
          • 示例
        • 8.ArrayBlockingQueue 阻塞队列 (基于数组)
          • 示例
        • 9.LinkedBlockingQueue 阻塞队列 (基于链表)
          • 示例
        • 10.LinkedBlockingDeque 阻塞队列 (基于双向链表)
          • 示例
        • 11.PriorityBlockingQueue 线程安全的优先队列
          • 示例
        • 12.SynchronousQueue 数据同步交换的队列
          • 示例
        • 13.LinkedTransferQueue 基于链表的数据交换队列
          • 示例
        • 14.DelayQueue 延时队列
          • 示例
      • 总结
      • 写在最后

579a429daf314744b995f37351b46548

前言

在多线程环境下,数据的并发访问和修改是无法避免的问题。

为了解决这个问题,Java 提供了一系列并发容器,这些容器在内部已经处理了并发问题,使得我们可以在多线程环境下安全地访问和修改数据。


并发容器

1.ConcurrentHashMap 并发版 HashMap

最常见的并发容器之一,可以用作并发场景下的缓存。底层依然是哈希表,但在 JAVA 8 中有了不小的改变,而 JAVA 7 和 JAVA 8 都是用的比较多的版本,因此经常会将这两个版本的实现方式做一些比较(比如面试中)。

一个比较大的差异就是,JAVA 7 中采用分段锁来减少锁的竞争,JAVA 8 中放弃了分段锁,采用 CAS(一种乐观锁),同时为了防止哈希冲突严重时退化成链表(冲突时会在该位置生成一个链表,哈希值相同的对象就链在一起),会在链表长度达到阈值(8)后转换成红黑树(比起链表,树的查询效率更稳定)。

示例
import java.util.concurrent.*;public class ConcurrentHashMapExample {public static void main(String[] args) {// Creating a ConcurrentHashMapConcurrentHashMap<String, String> map = new ConcurrentHashMap<String, String>();// Adding elements to the ConcurrentHashMapmap.put("Key1", "Value1");map.put("Key2", "Value2");map.put("Key3", "Value3");// Printing the ConcurrentHashMapSystem.out.println("ConcurrentHashMap: " + map);}
}
2.CopyOnWriteArrayList 并发版 ArrayList

并发版 ArrayList,底层结构也是数组,和 ArrayList 不同之处在于:当新增和删除元素时会创建一个新的数组,在新的数组中增加或者排除指定对象,最后用新增数组替换原来的数组。

CopyOnWriteArrayList 的主要特性是,每当列表修改时,例如添加或删除元素,它都会创建列表的一个新副本。原始列表和新副本都可以进行并发读取,这样就可以在不锁定整个列表的情况下进行并发读取。这种方法在读取操作远多于写入操作的场景中非常有用。

适用场景:由于读操作不加锁,写(增、删、改)操作加锁,因此适用于读多写少的场景。

局限:由于读的时候不会加锁(读的效率高,就和普通 ArrayList 一样),读取的当前副本,因此可能读取到脏数据。如果介意,建议不用。

看看源码感受下:

image-20201023223825079

示例
import java.util.concurrent.*;public class CopyOnWriteArrayListExample {public static void main(String[] args) {// 创建一个 CopyOnWriteArrayListCopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();// 向 CopyOnWriteArrayList 添加元素list.add("Element1");list.add("Element2");list.add("Element3");// 打印 CopyOnWriteArrayListSystem.out.println("CopyOnWriteArrayList: " + list);}
}
3.CopyOnWriteArraySet 并发 Set

基于 CopyOnWriteArrayList 实现(内含一个 CopyOnWriteArrayList 成员变量),也就是说底层是一个数组,意味着每次 add 都要遍历整个集合才能知道是否存在,不存在时需要插入(加锁)。

CopyOnWriteArraySet 的工作原理与 CopyOnWriteArrayList 类似。每当发生修改操作(如添加或删除元素)时,它都会创建集合的一个新副本。原始集合和新副本都可以进行并发读取,这样就可以在不锁定整个集合的情况下进行并发读取。这种方法在读取操作远多于写入操作的场景中非常有用。

适用场景:在 CopyOnWriteArrayList 适用场景下加一个,集合别太大(全部遍历伤不起)。

示例
import java.util.concurrent.*;public class CopyOnWriteArraySetExample {public static void main(String[] args) {// 创建一个 CopyOnWriteArraySetCopyOnWriteArraySet<String> set = new CopyOnWriteArraySet<String>();// 向 CopyOnWriteArraySet 添加元素set.add("Element1");set.add("Element2");set.add("Element3");// 打印 CopyOnWriteArraySetSystem.out.println("CopyOnWriteArraySet: " + set);}
}
4.ConcurrentLinkedQueue 并发队列 (基于链表)

基于链表实现的并发队列,使用乐观锁 (CAS) 保证线程安全。因为数据结构是链表,所以理论上是没有队列大小限制的,也就是说添加数据一定能成功。

ConcurrentLinkedQueue 是 Java 并发包的一部分,它是基于链接节点的无界线程安全队列。它按照 FIFO(先进先出)的原则对元素进行排序。

ConcurrentLinkedQueue 的主要优点是它允许完全并发的插入,并且使用了一种高效的“wait-free”算法。

示例
import java.util.concurrent.*;public class ConcurrentLinkedQueueExample {public static void main(String[] args) {// 创建一个 ConcurrentLinkedQueueConcurrentLinkedQueue<String> queue = new ConcurrentLinkedQueue<String>();// 向 ConcurrentLinkedQueue 添加元素queue.add("Element1");queue.add("Element2");queue.add("Element3");// 打印 ConcurrentLinkedQueueSystem.out.println("ConcurrentLinkedQueue: " + queue);}
}
5.ConcurrentLinkedDeque 并发队列 (基于双向链表)

基于双向链表实现的并发队列,可以分别对头尾进行操作,因此除了先进先出 (FIFO),也可以先进后出(FILO),当然先进后出的话应该叫它栈了。

ConcurrentLinkedDeque 是 Java 并发包的一部分,它是一个基于链接节点的无界并发双端队列。在 ConcurrentLinkedDeque 中,添加、删除等操作可以在队列的两端进行,使其具有更高的并发性。

示例
import java.util.concurrent.*;public class ConcurrentLinkedDequeExample {public static void main(String[] args) {// 创建一个 ConcurrentLinkedDequeConcurrentLinkedDeque<String> deque = new ConcurrentLinkedDeque<String>();// 向 ConcurrentLinkedDeque 添加元素deque.add("Element1");deque.addFirst("Element2");deque.addLast("Element3");// 打印 ConcurrentLinkedDequeSystem.out.println("ConcurrentLinkedDeque: " + deque);}
}
6.ConcurrentSkipListMap 基于跳表的并发 Map

ConcurrentSkipListMap 是 Java 并发包的一部分,它是一个线程安全的排序映射表。它使用跳表的数据结构来保证元素的有序性和并发性。

跳表是一种可以进行二分查找的有序链表。ConcurrentSkipListMap 提供了预期的平均 log(n) 时间成本来执行 containsKeygetputremove 操作,并且它的并发性通常优于基于树的算法。

SkipList 即跳表,跳表是一种空间换时间的数据结构,通过冗余数据,将链表一层一层索引,达到类似二分查找的效果

image-20201023223853743

示例
import java.util.concurrent.*;public class ConcurrentSkipListMapExample {public static void main(String[] args) {// 创建一个 ConcurrentSkipListMapConcurrentSkipListMap<String, String> map = new ConcurrentSkipListMap<String, String>();// 向 ConcurrentSkipListMap 添加元素map.put("Key1", "Value1");map.put("Key2", "Value2");map.put("Key3", "Value3");// 打印 ConcurrentSkipListMapSystem.out.println("ConcurrentSkipListMap: " + map);}
}
7.ConcurrentSkipListSet 基于跳表的并发 Set

类似 HashSet 和 HashMap 的关系,ConcurrentSkipListSet 里面就是一个 ConcurrentSkipListMap,

ConcurrentSkipListSet 是 Java 并发包的一部分,它是一个线程安全的排序集合。它使用跳表的数据结构来保证元素的有序性和并发性。

跳表是一种可以进行二分查找的有序链表。ConcurrentSkipListSet 提供了预期的平均 log(n) 时间成本来执行 containsaddremove 操作,并且它的并发性通常优于基于树的算法。

示例
import java.util.concurrent.*;public class ConcurrentSkipListSetExample {public static void main(String[] args) {// 创建一个 ConcurrentSkipListSetConcurrentSkipListSet<String> set = new ConcurrentSkipListSet<String>();// 向 ConcurrentSkipListSet 添加元素set.add("Element1");set.add("Element2");set.add("Element3");// 打印 ConcurrentSkipListSetSystem.out.println("ConcurrentSkipListSet: " + set);}
}
8.ArrayBlockingQueue 阻塞队列 (基于数组)

ArrayBlockingQueue 是 Java 并发包的一部分,它是一个基于数组的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。

ArrayBlockingQueue 在尝试插入元素到已满队列或从空队列中移除元素时,会导致线程阻塞,直到有空间或元素可用。

基于数组实现的可阻塞队列,构造时必须制定数组大小,往里面放东西时如果数组满了便会阻塞直到有位置(也支持直接返回和超时等待),通过一个锁 ReentrantLock 保证线程安全。

image-20201023223912400

乍一看会有点疑惑,读和写都是同一个锁,那要是空的时候正好一个读线程来了不会一直阻塞吗?

答案就在 notEmpty、notFull 里,这两个出自 lock 的小东西让锁有了类似 synchronized + wait + notify 的功能。传送门 → 终于搞懂了 sleep/wait/notify/notifyAll

示例
import java.util.concurrent.*;public class ArrayBlockingQueueExample {public static void main(String[] args) {// 创建一个 ArrayBlockingQueueArrayBlockingQueue<String> queue = new ArrayBlockingQueue<String>(3);// 向 ArrayBlockingQueue 添加元素try {queue.put("Element1");queue.put("Element2");queue.put("Element3");} catch (InterruptedException e) {e.printStackTrace();}// 打印 ArrayBlockingQueueSystem.out.println("ArrayBlockingQueue: " + queue);}
}
9.LinkedBlockingQueue 阻塞队列 (基于链表)

LinkedBlockingQueue 是 Java 并发包的一部分,它是一个基于链表的可选有界阻塞队列。此队列按照 FIFO(先进先出)的原则对元素进行排序。

LinkedBlockingQueue 在尝试插入元素到已满队列或从空队列中移除元素时,会导致线程阻塞,直到有空间或元素可用。

基于链表实现的阻塞队列,想比与不阻塞的 ConcurrentLinkedQueue,它多了一个容量限制,如果不设置默认为 int 最大值。

示例
import java.util.concurrent.*;public class LinkedBlockingQueueExample {public static void main(String[] args) {// 创建一个 LinkedBlockingQueueLinkedBlockingQueue<String> queue = new LinkedBlockingQueue<String>(3);// 向 LinkedBlockingQueue 添加元素try {queue.put("Element1");queue.put("Element2");queue.put("Element3");} catch (InterruptedException e) {e.printStackTrace();}// 打印 LinkedBlockingQueueSystem.out.println("LinkedBlockingQueue: " + queue);}
}
10.LinkedBlockingDeque 阻塞队列 (基于双向链表)

LinkedBlockingDeque 是 Java 并发包的一部分,它是一个基于链表的可选有界阻塞双端队列。此队列按照 FIFO(先进先出)的原则对元素进行排序。

LinkedBlockingDeque 在尝试插入元素到已满队列或从空队列中移除元素时,会导致线程阻塞,直到有空间或元素可用。双端队列的优势在于可以从两端插入或移除元素。

类似 LinkedBlockingQueue,但提供了双向链表特有的操作。

示例
import java.util.concurrent.*;public class LinkedBlockingDequeExample {public static void main(String[] args) {// 创建一个 LinkedBlockingDequeLinkedBlockingDeque<String> deque = new LinkedBlockingDeque<String>(3);// 向 LinkedBlockingDeque 添加元素try {deque.putFirst("Element1");deque.putLast("Element2");deque.putFirst("Element3");} catch (InterruptedException e) {e.printStackTrace();}// 打印 LinkedBlockingDequeSystem.out.println("LinkedBlockingDeque: " + deque);}
}
11.PriorityBlockingQueue 线程安全的优先队列

PriorityBlockingQueue 是 Java 并发包的一部分,它是一个无界的并发队列。它使用了和类 java.util.PriorityQueue 一样的排序规则,并且能够确保在并发环境下的线程安全。

PriorityBlockingQueue 中的元素按照自然顺序或者由比较器提供的顺序进行排序。队列不允许使用 null 元素。

构造时可以传入一个比较器,可以看做放进去的元素会被排序,然后读取的时候按顺序消费。某些低优先级的元素可能长期无法被消费,因为不断有更高优先级的元素进来。

示例
import java.util.concurrent.*;public class PriorityBlockingQueueExample {public static void main(String[] args) {// 创建一个 PriorityBlockingQueuePriorityBlockingQueue<String> queue = new PriorityBlockingQueue<String>();// 向 PriorityBlockingQueue 添加元素queue.add("Element1");queue.add("Element2");queue.add("Element3");// 打印 PriorityBlockingQueueSystem.out.println("PriorityBlockingQueue: " + queue);}
}
12.SynchronousQueue 数据同步交换的队列

SynchronousQueue 是 Java 并发包的一部分,它是一个不存储元素的阻塞队列。每一个 put 操作必须等待一个 take 操作,否则不能继续添加元素,反之亦然。

这种特性使 SynchronousQueue 成为线程之间传递数据的好工具。它可以看作是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。

一个虚假的队列,因为它实际上没有真正用于存储元素的空间,每个插入操作都必须有对应的取出操作,没取出时无法继续放入。

示例
import java.util.concurrent.SynchronousQueue;public class Main {public static void main(String[] args) {SynchronousQueue<Integer> queue = new SynchronousQueue<>();new Thread(()->{try{for(int i=0;;i++){System.out.println("放入:" + i);queue.put(i);}}catch (InterruptedException e){e.printStackTrace();}}).start();new Thread(()->{try{while(true){System.out.println("取出:" + queue.take());Thread.sleep((long)(Math.random()*2000));}}catch (InterruptedException e){e.printStackTrace();}}).start();}
}

运行结果:

取出:0
放入:0
取出:1
放入:1
放入:2
取出:2
取出:3
放入:3
取出:4
放入:4
...
...

可以看到,写入的线程没有任何 sleep,可以说是全力往队列放东西,而读取的线程又很不积极,读一个又 sleep 一会。输出的结果却是读写操作成对出现。

JAVA 中一个使用场景就是 Executors.newCachedThreadPool(),创建一个缓存线程池。

image-20201023223932760

13.LinkedTransferQueue 基于链表的数据交换队列

LinkedTransferQueue 是 Java 并发包的一部分,它是一个由链表结构组成的无界转移阻塞队列。队列按照 FIFO(先进先出)的原则对元素进行排序。

LinkedTransferQueue 的一个特性是,它可以尝试将元素直接转移给消费者,如果没有等待的消费者,元素就会被添加到队列的尾部,等待消费者来获取。

实现了接口 TransferQueue,通过 transfer 方法放入元素时,如果发现有线程在阻塞在取元素,会直接把这个元素给等待线程。如果没有人等着消费,那么会把这个元素放到队列尾部,并且此方法阻塞直到有人读取这个元素。和 SynchronousQueue 有点像,但比它更强大。

示例
import java.util.concurrent.*;public class LinkedTransferQueueExample {public static void main(String[] args) {// 创建一个 LinkedTransferQueueLinkedTransferQueue<String> queue = new LinkedTransferQueue<String>();// 启动一个新线程来从 LinkedTransferQueue 取出元素new Thread(() -> {try {System.out.println("Taken: " + queue.take());} catch (InterruptedException e) {e.printStackTrace();}}).start();// 向 LinkedTransferQueue 添加一个元素try {queue.transfer("Element");} catch (InterruptedException e) {e.printStackTrace();}}
}
14.DelayQueue 延时队列

DelayQueue 是 Java 并发包的一部分,它是一个无界阻塞队列,只有在延迟期满时才能从中提取元素。此队列的头部是延迟期满后保存时间最长的元素。如果延迟都还没有期满,则队列没有头部,并且 poll 将返回 null

元素在 DelayQueue 中的顺序是按照其到期时间的先后顺序进行排序的,越早到期的元素越排在队列前面。延迟队列常用于实现定时任务功能。

可以使放入队列的元素在指定的延时后才被消费者取出,元素需要实现 Delayed 接口。

示例
import java.util.concurrent.*;public class DelayQueueExample {public static void main(String[] args) {// 创建一个 DelayQueueDelayQueue<DelayedElement> queue = new DelayQueue<DelayedElement>();// 向 DelayQueue 添加一个元素,延迟 3 秒queue.put(new DelayedElement(3000, "Element"));// 从 DelayQueue 获取元素try {DelayedElement element = queue.take();System.out.println("Taken: " + element);} catch (InterruptedException e) {e.printStackTrace();}}
}class DelayedElement implements Delayed {private long delayTime; // 延迟时间private long expire;  // 到期时间private String element; // 元素数据public DelayedElement(long delay, String element) {this.delayTime = delay;this.element = element;this.expire = System.currentTimeMillis() + delay;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(expire - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic int compareTo(Delayed o) {return (int) (this.getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));}@Overridepublic String toString() {return element;}
}

总结

从上面的介绍总总结有以下几种容器类

  1. ConcurrentHashMap:并发版 HashMap

  2. CopyOnWriteArrayList:并发版 ArrayList

  3. CopyOnWriteArraySet:并发 Set

  4. ConcurrentLinkedQueue:并发队列 (基于链表)

  5. ConcurrentLinkedDeque:并发队列 (基于双向链表)

  6. ConcurrentSkipListMap:基于跳表的并发 Map

  7. ConcurrentSkipListSet:基于跳表的并发 Set

  8. ArrayBlockingQueue:阻塞队列 (基于数组)

  9. LinkedBlockingQueue:阻塞队列 (基于链表)

  10. LinkedBlockingDeque:阻塞队列 (基于双向链表)

  11. PriorityBlockingQueue:线程安全的优先队列

  12. SynchronousQueue:读写成对的队列

  13. LinkedTransferQueue:基于链表的数据交换队列

  14. DelayQueue:延时队列

Java 并发容器为处理多线程环境下的数据访问和修改提供了强大的工具。

通过了解和学习这些并发容器,我们可以更好地理解并发编程,更有效地处理并发问题。

无论你是正在学习 Java,还是已经在使用 Java 进行开发,我都强烈建议你深入了解这些并发容器,它们将在你的并发编程之路上起到重要的作用。


写在最后

感谢您的支持和鼓励! 😊🙏

如果大家对相关文章感兴趣,可以关注公众号"架构殿堂",会持续更新AIGC,java基础面试题, netty, spring boot, spring cloud等系列文章,一系列干货随时送达!

csdn-end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/211766.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C练习题13

单项选择题(本大题共20小题,每小题2分,共40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 1.结构化程序由三种基本结构组成、三种基本结构组成的算法是() A.可以完成任何复杂的任务 B. 只能完成部分复杂的任务 C. 只能完…

AUTOSAR汽车电子嵌入式编程精讲300篇-基于加密算法的车载CAN总线安全通信

目录 前言 研究现状 系统架构研究 异常检测研究 认证与加密研究 相关技术 2.1车联网 2.2车载网络及总线 2.2.1 CAN总线基础 2.2.2 CAN总线网络安全漏洞 2.2.3 CAN总线信息安全需求 2.3密码算法 2.3.1 AES算法 2.3.2 XTEA算法 CAN网络建模与仿真 3.1 CAN网络建模…

JavaScript基础知识22——断点调试

哈喽&#xff0c;你好啊&#xff0c;我是雷工! 断点调试是程序猿必备的调错&#xff0c;梳理逻辑的技能&#xff1b;当遇到程序报错&#xff0c;或者程序逻辑理解不了&#xff0c;都可以通过断点调试来辅助解决遇到的问题。 断点调试是程序猿必不可少的技能&#xff0c;本节学习…

【Openstack Train】十六、swift安装

OpenStack Swift是一个分布式对象存储系统&#xff0c;它可以为大规模的数据存储提供高可用性、可扩展性和数据安全性。Swift是OpenStack的一个核心组件&#xff0c;它允许用户将大量的数据存储在云上&#xff0c;并且可以随时访问、检索和管理这些数据。 Swift的设计目标是为了…

第十六届山东省职业院校技能大赛中职组网络安全赛项竞赛正式试题

第十六届山东省职业院校技能大赛中职组网络安全"赛项竞赛试题 一、竞赛时间 总计&#xff1a;360分钟 二、竞赛阶段 竞赛阶段任务阶段竞赛任务竞赛时间分值A、B模块A-1登录安全加固180分钟200分A-2本地安全策略设置A-3流量完整性保护A-4事件监控A-5服务加固A-6防火墙策…

深信服技术认证“SCSA-S”划重点:XSS漏洞

为帮助大家更加系统化地学习网络安全知识&#xff0c;以及更高效地通过深信服安全服务认证工程师考核&#xff0c;深信服特别推出“SCSA-S认证备考秘笈”共十期内容&#xff0c;“考试重点”内容框架&#xff0c;帮助大家快速get重点知识~ 划重点来啦 *点击图片放大展示 深信服…

「X」Embedding in NLP|Token 和 N-Gram、Bag-of-Words 模型释义

ChatGPT&#xff08;GPT-3.5&#xff09;和其他大型语言模型&#xff08;Pi、Claude、Bard 等&#xff09;凭何火爆全球&#xff1f;这些语言模型的运作原理是什么&#xff1f;为什么它们在所训练的任务上表现如此出色&#xff1f; 虽然没有人可以给出完整的答案&#xff0c;但…

金南瓜SECS/GEM C# SDK 快速使用指南

本文对如何使用金南瓜SECS/GEM C# SDK 快速创建一个满足SECS/GEM通信要求的应用程序&#xff0c;只需简单3步完成。 第一步&#xff1a;创建C# .NET程序 示例使用Visual Studio 2010&#xff0c;使用者可以选择更高级版本 Visual Studio 第二步&#xff1a;添加DLL库引用&am…

ThreadX开源助力Microsoft扩大应用范围:对比亚马逊AWS的策略差异

全球超过120亿台设备正在运行ThreadX&#xff0c;这是一款专为资源受限环境设计的实时操作系统。该操作系统在微控制器和小型处理器上表现出色&#xff0c;以极高的可靠性和精确的时间控制处理任务而闻名。 ThreadX曾是英特尔芯片管理引擎的引擎&#xff0c;并且是控制Raspber…

IntelliJ IDE 插件开发 | (二)UI 界面与数据持久化

系列文章 IntelliJ IDE 插件开发 |&#xff08;一&#xff09;快速入门 前言 在上一篇文章中介绍了在IDEA下开发、运行和安装插件的基本步骤&#xff0c;因此创建项目等基础步骤不再赘述&#xff0c;本文则开始介绍如何进行 UI 界面的开发以及相关数据的持久化存储&#xff…

unity 2d 入门 飞翔小鸟 飞翔脚本(五)

新建c#脚本 using System.Collections; using System.Collections.Generic; using UnityEngine;public class Fly : MonoBehaviour {//获取小鸟&#xff08;刚体&#xff09;private Rigidbody2D bird;//速度public float speed;// Start is called before the first frame up…

强敌环伺:金融业信息安全威胁分析——钓鱼和恶意软件

门口的敌人&#xff1a;分析对金融服务的攻击 Akamai会定期针对不同行业发布互联网状态报告&#xff08;SOTI&#xff09;&#xff0c;介绍相关领域最新的安全趋势和见解。最新的第8卷第3期报告主要以金融服务业为主&#xff0c;分析了该行业所面临的威胁和Akamai的见解。我们发…

SQL server 根据已有数据库创建相同的数据库

文章目录 用导出的脚本创建相同的数据库导出建表脚本再次建表 一些sql语句 用导出的脚本创建相同的数据库 导出建表脚本 首先&#xff0c;右击要导出的数据库名&#xff0c;依次选择任务-生成脚本。 简介&#xff08;第一页&#xff09;处选择下一步&#xff0c;然后来到选择…

反序列化 [网鼎杯 2020 朱雀组]phpweb 1

打开题目 我们发现这个页面一直在不断的刷新 我们bp抓包一下看看 我们发现index.php用post方式传了两个参数上去&#xff0c;func和p 我们需要猜测func和p两个参数之间的关系&#xff0c;可以用php函数MD5测一下看看 我们在响应处得到了一串密文&#xff0c;md5解密一下看看 发…

HBase-架构与设计

HBase架构与设计 一、背景二、HBase概述1.设计特点2.适用场景2.1 海量数据2.2 稀疏数据2.3 多版本数据2.4 半结构或者非结构化数据 三、数据模型1.RowKey2.Column Family3.TimeStamp 四、HBase架构图1.Client2.Zookeeper3.HMaster4.HRegionServer5.HRegion6.Store7.StoreFile8.…

10_企业架构NOSQL数据库之MongoDB

企业架构NOSQL数据库之MongoDB 学习目标和内容 1、能够简单描述MongoDB的使用特点 2、能够安装配置启动MongoDB 3、能够使用命令行客户端简单操作MongoDB 4、能够实现基本的数据操作 5、能够实现MongoDB基本安全设置 6、能够操作安装php的MongoDB扩展 一、背景描述及其方案设计…

PlantUML语法(全)及使用教程-类图

目录 1. 类图1.1、什么是类图1.2、元素声明1.3、类之间的关系1.4、关系上的标签1.5、在元素名称和关系标签中使用非字母1.6、添加方法 1. 类图 类图的设计语法与编程语言的传统语法相似。这种相似性为开发人员提供了一个熟悉的环境&#xff0c;从而使创建图表的过程更简单、更直…

接口获取数据控制台打印有值但是展开又没有了

谷歌浏览器只会展现响应式数据最后的结果&#xff0c;证明原来接口是有值的&#xff0c;后面对这个数据进行操作后&#xff0c;最终没有值了。所以对数据进行操作时最好对数据进行一次深拷贝 JSON.parse(JSON.stringify(data))

Apache Flink(七):Apache Flink快速入门 - DataStream BATCH模式

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 下面使用Java代码使用DataStream…

【9】PyQt对话框

目录 1. QMessageBox 2. QIputDialog 对话框是为了更好地实现人与程序的交互 对话框主要是完成特定场景下的功能,比如删除确认等 QDialog的子类有QMessageBox、QFileDialog、QFontDialog、QInputDialog等 1. QMessageBox QMessageBox是普通的对话框 代码示例&#xff1a; …