目录
一、单机限流
1、令牌桶算法
3、固定窗口限流算法
4、滑动窗口
二、集群限流
1、分布式固定窗口 (基于redis)
2、分布式滑动窗口
一、单机限流
1、令牌桶算法
令牌桶算法是当流量进入系统前需要获取令牌,没有令牌那么就要进行限流
这个算法是怎么实现的呢
-
定义一个后台协程按照一定的频率去产生token
-
后台协程产生的token 放到固定大小容器里面
-
有流量进入系统尝试拿到token,没有token 就需要限流了
type TokenBucketLimiter struct {token chan struct{}stop chan struct{}
}
func NewTokenBucket(capactity int, timeInternal time.Duration) *TokenBucketLimiter {te := make(chan struct{}, capactity)stop := make(chan struct{})ticker := time.NewTicker(timeInternal)go func() {defer ticker.Stop()for {select {case <-ticker.C:select {case te <- struct{}{}:default:
}case <-stop:return}}}()return &TokenBucketLimiter{token: te,stop: stop,}
}
func (t *TokenBucketLimiter) BuildServerInterceptor() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {select {case <-ctx.Done():err = ctx.Err()returncase <-t.token:return handler(ctx, req)case <-t.stop:err = errors.New("缺乏保护")return}}
}
func (t *TokenBucketLimiter) Stop() {close(t.stop)
}
3、固定窗口限流算法
什么是固定窗口限流算法
固定窗口限流算法(Fixed Window Rate Limiting Algorithm)是一种最简单的限流算法,其原理是在固定时间窗口(单位时间)内限制请求的数量。该算法将时间分成固定的窗口,并在每个窗口内限制请求的数量。具体来说,算法将请求按照时间顺序放入时间窗口中,并计算该时间窗口内的请求数量,如果请求数量超出了限制,则拒绝该请求。
优点:实现简单
缺点:对于瞬时流量没发处理,也就是临界问题,比如下图在20t前后,在16t以及26t有大量流量进来,在这10t中,已经超过了流量限制,没法限流
实现如下
type fixWindow1 struct {lastVistTime int64vistCount int64interval int64maxCount int64
}
func NewfixWindow1(macCount int64) *fixWindow1 {t := &fixWindow1{maxCount: macCount,}return t
}
func (f *fixWindow1) FixWindow1() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {current := time.Now().UnixNano()lasttime := atomic.LoadInt64(&f.lastVistTime)if lasttime+f.interval > current {if atomic.CompareAndSwapInt64(&f.lastVistTime, lasttime, current) {atomic.StoreInt64(&f.lastVistTime, current)atomic.StoreInt64(&f.maxCount, 0)}}count := atomic.AddInt64(&f.vistCount, 1)if count > f.maxCount {return gen.GetByIDResp{}, errors.New("触发限流")}return handler(ctx, req)}
}
4、滑动窗口
什么是滑动窗口算法:
滑动窗口限流算法是一种常用的限流算法,用于控制系统对外提供服务的速率,防止系统被过多的请求压垮。它将单位时间周期分为n
个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。它可以解决固定窗口临界值的问题。
type slideWindow struct {
timeWindow *list.Listinterval int64maxCnt intlock sync.Mutex
}
func NewSlideWindow(interval time.Duration, maxCnt int) *slideWindow {t := &slideWindow{timeWindow: list.New(),interval: interval.Nanoseconds(),maxCnt: maxCnt,}return t
}
func (s *slideWindow) SlideWinowlimit() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {s.lock.Lock()now := time.Now().UnixNano()// 快路径if s.timeWindow.Len() < s.maxCnt {resp, err = handler(ctx, req)s.timeWindow.PushBack(now)s.lock.Unlock()return}front := s.timeWindow.Front()for front != nil && front.Value.(int64)+s.interval < now {s.timeWindow.Remove(front)front = s.timeWindow.Front()}if s.timeWindow.Len() >= s.maxCnt {s.lock.Unlock()return &gen.GetByIdReq{}, errors.New("触发限流")}s.lock.Unlock()resp, err = handler(ctx, req)s.timeWindow.PushBack(now)return}
}
二、集群限流
下面是分布式限流,为啥是分布式限流,单机限流只能对单台服务器进行限流,没发对集权进行限流,需要用分布式限流来进行集权限流
1、分布式固定窗口 (基于redis)
type redisFix struct {
serName stringinterVal intlimitCnt intredis redis.Cmdable
}
//go:embed lua/fixwindow.lua
var lua_redis_fix string
func NewRedisFix(serName string, interval int, limitCnt int, redis redis.Cmdable) *redisFix {t := &redisFix{serName: serName,interVal: interval,limitCnt: limitCnt,redis: redis,}return t
}
func (r *redisFix) RedisFix() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {res, err := r.limit(ctx)if err != nil {return &gen.GetByIDResp{}, err}if res {return &gen.GetByIdReq{}, errors.New("触发限流")}return handler(ctx, req)}
}
func (r *redisFix) limit(ctx context.Context) (res bool, err error) {keys := []string{r.serName}res, err = r.redis.Eval(ctx, lua_redis_fix, keys, r.interVal, r.limitCnt).Bool()return
}
lua
local key = KEYS[1]
local limitCnt = tonumber(ARGV[2])
local val = redis.call('get',key)
if val==false thenif limitCnt<1 thenreturn "true"elseredis.call('set',key,1,'PX',ARGV[1])return "false"end
elseif tonumber(val)<limitCnt thenredis.call('incr',key)return "false"
elsereturn "true"
end
2、分布式滑动窗口
//go:embed lua/slidewindow.lua
var slideWindLua string
type redisSlib struct {serverName stringinterVal time.DurationmaxCnt int64redis redis.Cmdable
}
func NewRedisSlib(interval time.Duration, maxCnt int64, serverName string, clientCmd redis.Cmdable) *redisSlib {t := &redisSlib{serverName: serverName,interVal: interval,maxCnt: maxCnt,redis: clientCmd,}return t
}
func (r *redisSlib) RedisSlibLimt() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {limt, err := r.limt(ctx)if err != nil {return nil, err}if limt {return nil, errors.New("限流")}return handler(ctx, req)}
}
func (r *redisSlib) limt(ctx context.Context) (bool, error) {now := time.Now().UnixMilli()return r.redis.Eval(ctx, slideWindLua, []string{r.serverName}, r.interVal.Milliseconds(), r.maxCnt, now).Bool()
}
lua
local key = KEYS[1]
local window = tonumber(ARGV[1])
local maxCnt = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
--- 窗口的最小边界
local min = now-window
redis.call('ZREMRANGEBYSCORE',key,'-inf',min)
local cnt = redis.call('ZCOUNT',key,'-inf','+inf')
if cnt>=maxCnt thenreturn "true"
elseredis.call('ZADD',key,now,now)redis.call('PEXPIRE',key,window)return "false"
end