智能优化算法应用:基于金枪鱼群算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于金枪鱼群算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于金枪鱼群算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.金枪鱼群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用金枪鱼群算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.金枪鱼群算法

金枪鱼群算法原理请参考:https://blog.csdn.net/u011835903/article/details/123562840
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

金枪鱼群算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明金枪鱼群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/212629.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码混淆技术探究与工具选择

代码混淆技术探究与工具选择 引言 在软件开发中,保护程序代码的安全性是至关重要的一环。代码混淆(Obfuscated code)作为一种常见的保护手段,通过将代码转换成难以理解的形式来提升应用被逆向破解的难度。本文将介绍代码混淆的概…

JAVA后端自学技能实操合集

JAVA后端自学技能实操 内容将会持续更新中,有需要添加什么内容可以再评论区留言,大家一起学习FastDFS使用docker安装FastDFS(linux)集成到springboot项目中 内容将会持续更新中,有需要添加什么内容可以再评论区留言,大家一起学习 FastDFS 组名:文件上传后所在的 st…

配置集群免密登录

文章目录 前言配置集群免密登录1. 设置主机名与 IP 地址的映射关系2. 生成 SSH 密钥对3. 将公钥复制到集群节点4. 测试免密登录5. 配置节点之间互相免密登录 总结 前言 本文介绍了如何配置集群之间免密登录,以便在搭建集群环境时方便地进行节点之间的通信。通过设置…

分布式搜索引擎elasticsearch(二)

1.DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1.1.DSL查询分类 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查…

编程过程中出现bug如何应对?

编程过程中出现bug如何应对? 1.找错误原因 如果完全不知道出错的原因,或者说存在着很多错误的有原因,----》控制变量法 例如,昨天我在使用torchrun 多卡并行一个程序的时候,出现了大量的bug, 于是我将报错信息放在网…

UDP实现群聊

代码: import java.awt.*; import java.awt.event.*; import javax.swing.*; import java.net.*; import java.io.IOException; import java.lang.String;public class liaotian extends JFrame{private static final int DEFAULT_PORT8899;private JLabel stateLB…

Kubernetes(K8s 1.27.x) 快速上手+实践,无废话纯享版(视频笔记)

视频源:1.03-k8s是什么?_哔哩哔哩_bilibili 1 基础知识 1.1 K8s 有用么? K8s有没有用 K8s要不要学? 参考资料: https://www.infoq.com/articles/devops-and-cloud-trends-2022/?itm_sourcearticles_about_InfoQ-trends-report…

Javascript 函数介绍

Javascript 函数介绍 很多教程书一上来就讲解一堆语法&#xff0c;例如函数定义、函数调用什么。等读者看完了函数这一章都没搞懂什么是函数。 在讲解什么叫函数之前&#xff0c;我们先看下面一段代码&#xff1a; <!DOCTYPE html> <html xmlns"http://www.w3.…

vue的data

类型&#xff1a;Object | Function 限制&#xff1a;组件的定义只接受 function。 详细&#xff1a; Vue 实例的数据对象。Vue 会递归地把 data 的 property 转换为 getter/setter&#xff0c;从而让 data 的 property 能够响应数据变化。对象必须是纯粹的对象 (含有零个或多个…

[python库] mistune库的基本使用

前言 mistune库是一个解析Markdown的利器&#xff0c;使用起来非常简单。当我们想要解析Markdown格式的文档时&#xff0c;只需两步就能将其转换成html格式。如下&#xff1a; import mistune mistune.html(YOUR_MARKDOWN_TEXT)安装方式也非常简单&#xff0c;dddd&#xff1…

蓝桥杯物联网竞赛_STM32L071_10_温度传感器扩展模块

原理图&#xff1a; 温度传感器原理图&#xff1a; 其中芯片可以通过SCL和SDA引脚通过I2C通信向温度传感器指定地址获取温度的模拟量 再利用公式将模拟量转换成相应温度即可 实验板接口原理图&#xff1a; 模拟量转相应温度公式&#xff1a; CubMx配置&#xff1a; Keil配置&…

AWS攻略——使用中转网关(Transit Gateway)连接同区域(Region)VPC

文章目录 环境准备创建VPC 配置中转网关给每个VPC创建Transit Gateway专属挂载子网创建中转网关创建中转网关挂载修改VPC的路由 验证创建业务Private子网创建可被外网访问的环境测试子网连通性Public子网到Private子网Private子网到Private子网 知识点参考资料 在《AWS攻略——…

数组的查找:线性查找,二分查找

数组的查找&#xff1a;线性查找&#xff0c;二分查找 主要包含线性查找、二分查找 线性查找 先复习一下数组&#xff1a;数据结构复习&#xff1a;链表、数组、栈、队列、哈希表、堆、二叉树-CSDN博客 即便数据没有按顺序存储,也可以应用线性查找。 查找数字&#xff1a;首…

Linux——操作系统与进程的基础概念

操作系统与进程的基础概念 本章思维导图&#xff1a; 注&#xff1a;思维导图对应的.xmind和.png文件都已同步导入至资源 1. 操作系统&#xff08;OS&#xff09; 操作系统的基本概念&#xff1a; 操作系统(operator system)简称OS&#xff0c;是一个管理软硬件资源的软件 1.…

海云安参与制定《信息安全技术 移动互联网应用程序(App)软件开发工具包(SDK)安全要求》标准正式发布

近日&#xff0c;由TC260&#xff08;全国信息安全标准化技术委员会&#xff09;归口 &#xff0c;主管部门为国家标准化管理委员会&#xff0c;深圳海云安网络安全技术有限公司&#xff08;以下简称“海云安”&#xff09;等多家相关企事业单位共同参与编制的GB/T 43435-2023《…

第21章:网络通信

21.1 网络程序设计基础 21.1.1 局域网与互联网 为了实现两台计算机的通信&#xff0c;必须用一个网络线路连接两台计算机。如下图所示 21.1.2 网络协议 1.IP协议 IP是Internet Protocol的简称&#xff0c;是一种网络协议。Internet 网络采用的协议是TCP/IP协议&#xff0…

【教程】逻辑回归怎么做多分类

目录 一、逻辑回归模型介绍 1.1 逻辑回归模型简介 1.2 逻辑回归二分类模型 1.3 逻辑回归多分类模型 二、如何实现逻辑回归二分类 2.1 逻辑回归二分类例子 2.2 逻辑回归二分类实现代码 三、如何实现一个逻辑回归多分类 3.1 逻辑回归多分类问题 3.1 逻辑回归多分类的代…

用Rust刷LeetCode之66 加一

66. 加一[1] 难度: 简单 func plusOne(digits []int) []int { length : len(digits) // 从最低位开始遍历&#xff0c;逐位加一 for i : length - 1; i > 0; i-- { if digits[i] < 9 { digits[i] return digits } d…

经验分享|MySQL分区实战(RANGE)

概述 分区概述 在 MySQL 中&#xff0c; InnoDB存储引擎长期以来一直支持表空间的概念。在 MySQL 8.0 中&#xff0c;同一个分区表的所有分区必须使用相同的存储引擎。但是&#xff0c;也可以为同一 MySQL 服务器甚至同一数据库中的不同分区表使用不同的存储引擎。 通俗地讲…

家电制造数字孪生5G智能工厂可视化系统,加速家电制造产业数字化转型

5G数字孪生、三维可视化与工业互联网的融合加速中国新型工业化进程&#xff0c;助推我国从制造大国迈进制造强国。家电行业是中国最具国际竞争力的产业之一&#xff0c;在企业数字化转型中&#xff0c;要求企业从生产设备到数字化系统&#xff0c;一系列的数字化、智能化改革已…