【深度学习】AlexNet网络实现猫狗分类

【深度学习】AlexNet网络实现猫狗分类

AlexNet简介

AlexNet是一种卷积神经网络(Convolutional Neural Network,CNN)模型,它在2012年的ImageNet图像分类挑战赛中取得了重大突破,引发了深度学习在计算机视觉领域的热潮。下面是对AlexNet模型和CNN模型的关系以及原理的解释:

  1. AlexNet模型是一种CNN模型:
  • AlexNet是一种典型的卷积神经网络模型,它由多个卷积层、池化层和全连接层组成,通过这些层的堆叠和组合来提取图像的特征并进行分类。

  • CNN模型的原理:

  • CNN是一种专门用于处理具有网格结构的数据(如图像)的深度学习模型。它通过卷积层和池化层来提取图像的局部特征,并通过全连接层进行分类。

  • 卷积层通过卷积操作对输入图像进行特征提取,通过滑动一个卷积核(filter)在图像上进行局部特征的提取,生成特征图(feature map)。

  • 池化层通过降采样操作减小特征图的尺寸,并保留主要的特征信息。

  • 全连接层将池化层输出的特征图转换为一维向量,并通过全连接神经网络进行分类。

3.AlexNet模型的原理:

  • AlexNet模型是由Alex Krizhevsky等人提出的,它在CNN模型的基础上进行了一些创新和改进。
  • AlexNet模型的网络结构包括多个卷积层、池化层和全连接层,其中使用了ReLU激活函数来增强非线性特性。

4.AlexNet模型的特点包括:

  • 使用多个卷积层和池化层进行特征提取,通过堆叠多个卷积层来逐渐提取更高级别的特征。

  • 使用了局部响应归一化(Local Response Normalization)层来增强模型的泛化能力。

  • 使用了Dropout层来减少过拟合。

  • 使用了大规模的训练数据和数据增强技术来提高模型的性能。

  • AlexNet模型在ImageNet图像分类挑战赛中取得了显著的成绩,为后续的深度学习模型的发展奠定了基础。

总结来说,AlexNet模型是一种经典的CNN模型,它通过卷积层、池化层和全连接层来提取图像的特征并进行分类。AlexNet模型在深度学习的发展中起到了重要的作用,对后续的CNN模型设计和图像分类任务产生了深远的影响。

代码:

1.导入所需的库:
torch:PyTorch库,用于构建和训练神经网络模型。
torch.nn:PyTorch的神经网络模块,包含了构建神经网络所需的类和函数。
torch.optim:PyTorch的优化器模块,包含了各种优化算法。
torchvision.transforms:PyTorch的图像转换模块,用于对图像进行预处理。
warnings:Python的警告模块,用于忽略警告信息。
torch.utils.data:PyTorch的数据加载模块,用于加载和处理数据。
torchvision.datasets:PyTorch的数据集模块,包含了常用的图像数据集。
torchvision.models:PyTorch的预训练模型模块,包含了一些经典的神经网络模型。

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import warnings
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.models import alexnet
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

2.数据预处理并加载数据:

# 检查是否有可用的GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
#cuda显卡warnings.filterwarnings("ignore")# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载训练数据和测试数据
train_dataset = ImageFolder("dataset/train", transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)test_dataset = ImageFolder("dataset/test", transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

通过torch.cuda.is_available()函数判断是否有可用的GPU,并将设备设置为’cuda’或’cpu’。
使用torchvision.transforms.Compose函数定义了一系列的图像转换操作,包括调整大小、转换为张量、归一化等。
使用torchvision.datasets.ImageFolder类加载训练数据集和测试数据集,并应用之前定义的数据预处理操作。
使用torch.utils.data.DataLoader类将数据集包装成可迭代的数据加载器,设置批量大小和是否打乱数据。
3.定义AlexNet模型:

# 定义AlexNet模型
class AlexNet(nn.Module):def __init__(self, num_classes=2):super(AlexNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(64, 192, kernel_size=5, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),)self.avgpool = nn.AdaptiveAvgPool2d((6, 6))self.classifier = nn.Sequential(nn.Dropout(),nn.Linear(256 * 6 * 6, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return xmodel = AlexNet()# 将模型移动到GPU上
model = model.to(device)

创建一个继承自torch.nn.Module的子类AlexNet,其中包含了AlexNet模型的网络结构和前向传播方法。
网络结构包括卷积层、ReLU激活函数、最大池化层和全连接层。
通过self.features定义了卷积层和池化层的结构,通过self.classifier定义了全连接层的结构。
前向传播方法将输入数据经过卷积层、池化层、全连接层等操作,得到输出结果。
创建一个AlexNet模型的实例对象model。
使用model.to(device)将模型移动到之前检查的可用设备上。
4.定义损失函数和优化器:

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

定义交叉熵损失函数nn.CrossEntropyLoss()。
定义随机梯度下降优化器optim.SGD,设置学习率和动量。
5.定义学习率调度器:

# 定义学习率调度器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

使用optim.lr_scheduler.StepLR定义学习率调度器,设置学习率衰减的步长和衰减因子。
6.训练模型:

# 训练模型
epochs = 10  # 修改为您想要的训练轮数
train_loss_list = []
train_acc_list = []
test_acc_list = []
for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for images, labels in train_loader:images = images.to(device)labels = labels.to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()train_accuracy = correct / totaltrain_loss = running_loss / len(train_loader)train_loss_list.append(train_loss)train_acc_list.append(train_accuracy)# 测试模型correct = 0total = 0with torch.no_grad():for images, labels in test_loader:images = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()test_accuracy = correct / totaltest_acc_list.append(test_accuracy)print("Epoch {} - Training loss: {:.4f} - Training accuracy: {:.4f} - Test accuracy: {:.4f}".format(epoch, train_loss, train_accuracy, test_accuracy))# 更新学习率scheduler.step()

使用range(epochs)循环进行指定轮数的训练。
在每个epoch中,遍历训练数据集,将数据移动到设备上,通过前向传播计算输出,计算损失并进行反向传播和优化。
计算训练集的准确率和损失,并将其记录在列表中。
在每个epoch结束后,使用测试数据集评估模型的准确率,并将其记录在列表中。
打印每个epoch的训练损失、训练准确率和测试准确率。
使用学习率调度器更新学习率。
7.保存模型:

# 保存模型
torch.save(model.state_dict(), "alexnet.pth")

8.加载预训练的模型参数:

model.load_state_dict(torch.load('alexnet.pth'))

9.将模型移动到CPU上进行预测:

model = model.to('cpu')

10.可视化预测结果:

examples = enumerate(test_loader)
_, (imgs, _) = next(examples)fig = plt.figure()
# for i in range(len(imgs)):
for i in range(20):img = imgs[i].numpy()img = img.transpose(1, 2, 0)img = (img + 1) / 2with torch.no_grad():output = model(torch.unsqueeze(imgs[i], 0))_, predicted = torch.max(output.data, 1)if predicted.item() == 0:pre_value = "狗"else:pre_value = "猫"plt.subplot(6, 5, i + 1)###########################plt.tight_layout()plt.imshow(img)plt.title("预测值: {}".format(pre_value))plt.xticks([])plt.yticks([])plt.show()

从测试数据集中获取一批图像数据。
对每个图像进行预测,并将预测结果和图像可视化展示出来。

运行结果:

在这里插入图片描述注:数据集可以更换为自己的数据集

完整代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import warnings
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.models import alexnet
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签# 检查是否有可用的GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
#cuda显卡warnings.filterwarnings("ignore")# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载训练数据和测试数据
train_dataset = ImageFolder("dataset/train", transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)test_dataset = ImageFolder("dataset/test", transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)# 定义AlexNet模型
class AlexNet(nn.Module):def __init__(self, num_classes=2):super(AlexNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(64, 192, kernel_size=5, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),)self.avgpool = nn.AdaptiveAvgPool2d((6, 6))self.classifier = nn.Sequential(nn.Dropout(),nn.Linear(256 * 6 * 6, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return xmodel = AlexNet()# 将模型移动到GPU上
model = model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# 定义学习率调度器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)# 训练模型
epochs = 10  # 修改为您想要的训练轮数
train_loss_list = []
train_acc_list = []
test_acc_list = []
for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for images, labels in train_loader:images = images.to(device)labels = labels.to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()train_accuracy = correct / totaltrain_loss = running_loss / len(train_loader)train_loss_list.append(train_loss)train_acc_list.append(train_accuracy)# 测试模型correct = 0total = 0with torch.no_grad():for images, labels in test_loader:images = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()test_accuracy = correct / totaltest_acc_list.append(test_accuracy)print("Epoch {} - Training loss: {:.4f} - Training accuracy: {:.4f} - Test accuracy: {:.4f}".format(epoch, train_loss, train_accuracy, test_accuracy))# 更新学习率scheduler.step()# 保存模型
torch.save(model.state_dict(), "alexnet.pth")# 加载预训练的模型参数
model.load_state_dict(torch.load('alexnet.pth'))# 将模型移动到CPU上进行预测
model = model.to('cpu')examples = enumerate(test_loader)
_, (imgs, _) = next(examples)fig = plt.figure()
# for i in range(len(imgs)):
for i in range(20):img = imgs[i].numpy()img = img.transpose(1, 2, 0)img = (img + 1) / 2with torch.no_grad():output = model(torch.unsqueeze(imgs[i], 0))_, predicted = torch.max(output.data, 1)if predicted.item() == 0:pre_value = "狗"else:pre_value = "猫"plt.subplot(6, 5, i + 1)###########################plt.tight_layout()plt.imshow(img)plt.title("预测值: {}".format(pre_value))plt.xticks([])plt.yticks([])plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213048.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端学习系列之CSS

目录 CSS 简介 发展史 优势 基本语法 引用方式 内部样式 行内样式 外部样式 选择器 id选择器 class选择器 标签选择器 子代选择器 后代选择器 相邻兄弟选择器 后续兄弟选择器 交集选择器 并集选择器 通配符选择器 伪类选择器 属性选择器 CSS基本属性 优…

基于ssm家庭理财系统源码和论文

基于ssm家庭理财系统源码和论文743 idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 环境: jdk8 tomcat8.5 开发技术 ssm 摘要 随着Internet的发展,人们的日常生活已经离不开网络。未来人们的生活与工作将变得越来越数字化&#xff…

机器人刚性碰撞任务的阻抗控制性能

问题描述 对于机器人刚性碰撞任务,阻抗控制可以有效地提高机器人的适应性和稳定性。 在刚性碰撞任务中,机器人在接触外部物体时需要快速适应并调整自身的运动轨迹和速度,以实现精确的操控和稳定的交互。阻抗控制可以通过调整机器人的阻抗参…

cuda lib 线程安全的要义

1, 概述 cuda lib 线程安全的几个多线程的情景: 单卡多线程; 多卡多线程-每卡单线程; 多卡多线程-每卡多线程; 需要考虑的问题: 每个 cublasHandle_t 只能有一个stream么? 每个cusolverHandle_t 只能有一…

AR + 通信,虚实结合让工作协同从线上到「现场」

在数字经济无所不在的当下,千行百业都与数智化办公接轨并因其实现转型升级。关注【融云 RongCloud】,了解协同办公平台更多干货。 升级的背后,是利用技术把工作用更自然的方式连接起来,让整个工作流协同更顺、体验更好。 而其中…

应用架构——集群、分布式、微服务的概念及异同

一、什么是集群? 集群是指将多台服务器集中在一起, 每台服务器都实现相同的业务,做相同的事;但是每台服务器并不是缺 一不可,存在的主要作用是缓解并发能力和单点故障转移问题。 集群主要具有以下特征: …

042:el-table表格表头自定义高度(亲测好用)

第042个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

python3.5安装教程及环境配置,python3.7.2安装与配置

大家好,小编来为大家解答以下问题,python3.5安装教程及环境配置,python3.7.2安装与配置,现在让我们一起来看看吧! python 从爬虫开始(一) Python 简介 首先简介一下Python和爬虫的关系与概念&am…

【iOS】网络请求GET与POST

【iOS】网络请求GET与POST 前沿一. GET与POST的共同点二. GET与POST的不同点三. 实现方式总结 前沿 HTTP定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE。URL全称是资源描述符&#xff0…

护眼灯有效果吗?考研必备护眼台灯推荐

据统计,中国人口的近视率约为10%至20%。 国家卫健委发布的中国首份眼健康白皮书显示,我国小学生近视率为47.2%,初中生近视率为75.8%,大学生近视率超过90%。据世界卫生组织统计数据显示,目前全球约有14亿近视人口&#…

【C语言】深入理解C语言中的数学运算和类型转换

文章目录 引言取负运算的奥秘源码探索分析与解读 浮点数运算的精细差异源码分析精度损失与隐式类型转换 精度和除零运算探究float类型和double类型的精度各是多少(即十进制有效位的位数)?在你的机器上,“负数开方”是如何处理的&a…

LeetCode题:174. 地下城游戏

目录 一、题目要求 二、解题思路 (1)状态表示 (2)状态转移方程 (3)初始化dp表 (4)填表顺序 (5)返回值 三、代码 一、题目要求 174. 地下城游戏 恶魔们…

关于什么是 JVM

关于什么是 JVM,看看普通⼈和⾼⼿的回答。 普通人 JVM 就是 Java 虚拟机,是⽤来运⾏我们平时所写的 Java 代码的。优点是它会 ⾃动进⾏内存管理和垃圾回收,缺点是⼀旦发⽣问题,要是不了解 JVM 的运⾏ 机制, 就很难…

C#中GDI+绘图应用(柱形图、折线图和饼形图)

目录 一、柱形图 1.示例源码 2.生成效果 二、折线图 1.示例源码 2.生成效果 三、饼形图 1.示例源码 2.生成效果 GDI绘制的一些常用的图形,其中包括柱形图、折线图和饼形图。 一、柱形图 柱形图也称为条形图,是程序开发中比较常用的一种图表技术…

2024年网络安全行业前景和技术自学

很多人不知道网络安全发展前景好吗?学习网络安全能做什么?今天为大家解答下 先说结论,网络安全的前景必然是超级好的 作为一个有丰富Web安全攻防、渗透领域老工程师,之前也写了不少网络安全技术相关的文章,不少读者朋…

vuepress-----19、自动生成侧边栏

自动生成侧边栏插件 https://github.com/shanyuhai123/vuepress-plugin-auto-sidebar https://shanyuhai123.github.io/vuepress-plugin-auto-sidebar/ 安装 npm i vuepress-plugin-auto-sidebar -Dmodule.exports {plugins: [["vuepress-plugin-auto-sidebar",…

【抽象策略模式】实践

前言 刚果商城,用户登录 Or 注册 发送邮箱验证码场景,使用抽象策略模式实现 什么是抽象策略模式 抽象策略模式是一种行为型设计模式,它允许定义一系列算法,将每个算法封装起来,并使它们可以互相替换。这使得客户端代码…

牛客在线编程(SQL大厂面试真题)

1.各个视频的平均完播率_牛客题霸_牛客网 ROP TABLE IF EXISTS tb_user_video_log, tb_video_info; CREATE TABLE tb_user_video_log (id INT PRIMARY KEY AUTO_INCREMENT COMMENT 自增ID,uid INT NOT NULL COMMENT 用户ID,video_id INT NOT NULL COMMENT 视频ID,start_time d…

NSS [NSSCTF 2022 Spring Recruit]babyphp

NSS [NSSCTF 2022 Spring Recruit]babyphp 考点&#xff1a;PHP特性 开局源码直接裸奔 <?php highlight_file(__FILE__); include_once(flag.php);if(isset($_POST[a])&&!preg_match(/[0-9]/,$_POST[a])&&intval($_POST[a])){if(isset($_POST[b1])&&…

【K8s】Kubernetes CRD 介绍(控制器)

文章目录 CRD 概述1. 操作CRD1.1 创建 CRD1.2 操作 CRD 2. 其他笔记2.1 Kubectl 发现机制2.2 校验 CR2.3 简称和属性 3. 架构设计3.1 控制器概览 参考 CRD 概述 CR&#xff08;Custom Resource&#xff09;其实就是在 Kubernetes 中定义一个自己的资源类型&#xff0c;是一个具…