TinyMPC - CMU (卡耐基梅隆大学)开源的机器人 MPC 控制器

系列文章目录

CasADi - 最优控制开源 Python/MATLAB 库


文章目录

  • 系列文章目录
  • 前言
  • 一、机器人硬件对比
    • 1.1 Teensy 上的微控制器基准测试
    • 1.2 机器人硬件
    • 1.3 BibTeX
  • 二、求解器
  • 三、功能(预期)
    • 3.1 高效
    • 3.2 鲁棒
    • 3.3 可嵌入式
    • 3.4 最小依赖性
    • 3.5 高效热启动
    • 3.6 接口
  • 四、在 Ubuntu 安装
    • 4.1 在终端克隆此 repo
    • 4.2 导航至根目录并运行
    • 4.3 执行 CMake 配置步骤
    • 4.4 构建 TinyMPC
  • 五、示例
    • 5.1 运行四旋翼飞行器悬停示例
    • 5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作


前言

TinyMPC: 资源受限微控制器上的模型预测控制

作者:Anoushka Alavilli*, Khai Nguyen*, Sam Schoedel*, Brian Plancher, Zachary Manchester

Carnegie Mellon University, Barnard College


模型预测控制(Model-predictive control,MPC)是控制受复杂约束条件(complex constraints)影响的高动态机器人系统(highly dynamic robotic systems)的有力工具。然而,MPC 的计算要求很高,在资源有限的小型机器人平台上实施往往不切实际。我们推出的 TinyMPC 是一种高速 MPC 求解器,内存占用少,适用于小型机器人上常见的微控制器。我们的方法基于交替方向乘子法(ADMM),并利用 MPC 问题的结构来提高效率。我们以最先进的求解器 OSQP 为基准,对 TinyMPC 进行了演示,速度提高了近一个数量级,同时还在一个重达 27 克的四旋翼机器人上进行了硬件实验,演示了高速轨迹跟踪(high-speed trajectory tracking)和动态避障(dynamic obstacle avoidance)。

一、机器人硬件对比

在这里插入图片描述

在这里插入图片描述

1.1 Teensy 上的微控制器基准测试

在这里插入图片描述

1.2 机器人硬件

在这里插入图片描述

1.3 BibTeX

@misc{tinympc,title={TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers}, author={Anoushka Alavilli and Khai Nguyen and Sam Schoedel and Brian Plancher and Zachary Manchester},year={2023},eprint={2310.16985},archivePrefix={arXiv},primaryClass={cs.RO}
}

二、求解器

TinyMPC 求解器是一个数值优化软件包,用于求解默认形式的凸二次规划型模型预测控制(convex quadratic model-predictive control)
minimize: ⁡ 1 2 ( x N − x ˉ N ) T Q f ( x N − x ˉ N ) + ∑ k = 0 N ( 1 2 ( x k − x ˉ k ) T Q ( x k − x ˉ k ) + 1 2 ( u k − u ˉ k ) T R ( u k − u ˉ k ) ) subject  to: ⁡ x k + 1 = A x k + B u k u ‾ ≤ u k ≤ u ‾ x ‾ ≤ x k ≤ x ‾ \begin{array}{l l}{\operatorname*{minimize:}}&{\dfrac{1}{2}(x_{N}-\bar{x}_{N})^{T}Q_{f}(x_{N}-\bar{x}_{N})+{{\sum_{k=0}^{N}\bigl(\frac{1}{2}(x_{k}-\bar{x}_{k})^{T}Q(x_{k}-\bar{x}_{k})+\frac{1}{2}\bigl(u_{k}-\bar{u}_{k}\bigr)^{T}R(u_{k}-\bar{u}_{k})\bigr)}}} \\ {\operatorname*{subject\;to:}}&x_{k+1}=A x_{k}+B u_{k} \\ & \overline{{{u}}}\,\leq\,u_{k}\,\leq\underline{{u}} \\ & \overline{{{x}}}\,\leq\,x_{k}\,\leq\underline{{x}} \end{array} minimize:subjectto:21(xNxˉN)TQf(xNxˉN)+k=0N(21(xkxˉk)TQ(xkxˉk)+21(ukuˉk)TR(ukuˉk))xk+1=Axk+Bukuukuxxkx

其中, x k ∈ R n x_{k}\in\mathbb{R}^{n} xkRn u k ∈ R m u_{k}\in\mathbb{R}^{m} ukRm 分别为时间步长为 k 时的状态和控制输入,N 为时间步长(也称为视平线), A ∈ R n × n A\in\mathbb{R}^{n\times n} ARn×n B ∈ R n × m B\in\mathbb{R}^{n\times m} BRn×m 定义了系统动力学, Q ≥ 0 Q\geq0 Q0 R ≻ 0 R\succ0 R0 Q f ≥ 0 Q_{f}\geq0 Qf0 为对称成本权重矩阵, x ~ k {\tilde{x}}_{k} x~k u ˉ k {\bar{u}}_{k} uˉk 是状态和输入参考轨迹。

三、功能(预期)

3.1 高效

它采用基于 ADMM 的定制一阶方法,无需矩阵因式分解。所有其他操作都非常简单。它还利用 MPC 问题中的结构,为基元更新实现了黎卡提递归(Riccati recursion)。

3.2 鲁棒

该算法完全 free,而且不需要对问题数据做任何假设(问题只需要是凸的)。它就是这么简单!

3.3 可嵌入式

它有一个简单的接口,无需内存管理器即可生成定制的可嵌入 C 代码。

3.4 最小依赖性

它只需要 Eigen 就能运行。

3.5 高效热启动

它可以轻松热启动,并且可以缓存矩阵因式分解,从而极其高效地解决参数化问题。

3.6 接口

它为 C、C++、Julia、Matlab 和 Python 提供了接口。

四、在 Ubuntu 安装

4.1 在终端克隆此 repo

git clone git@github.com:TinyMPC/TinyMPC.git

4.2 导航至根目录并运行

cd TinyMPC
mkdir build && cd build

4.3 执行 CMake 配置步骤

cmake ../

4.4 构建 TinyMPC

make 

五、示例

5.1 运行四旋翼飞行器悬停示例

./examples/example_quadrotor_hovering
tracking error at step  0: 2.2472
tracking error at step  1: 2.9549
tracking error at step  2: 2.5478
tracking error at step  3: 2.6331
tracking error at step  4: 3.1375
tracking error at step  5: 3.6413
tracking error at step  6: 4.0214
tracking error at step  7: 4.2898
tracking error at step  8: 4.5070
tracking error at step  9: 4.6282
tracking error at step 10: 4.3689
tracking error at step 11: 3.8895
tracking error at step 12: 3.3699
tracking error at step 13: 2.8681
tracking error at step 14: 2.3877
tracking error at step 15: 1.9336
tracking error at step 16: 1.5516
tracking error at step 17: 1.2588
tracking error at step 18: 1.0420
tracking error at step 19: 0.8844
tracking error at step 20: 0.7680
tracking error at step 21: 0.6773
tracking error at step 22: 0.6009
tracking error at step 23: 0.5316
tracking error at step 24: 0.4658
tracking error at step 25: 0.4024
tracking error at step 26: 0.3416
tracking error at step 27: 0.2839
tracking error at step 28: 0.2305
tracking error at step 29: 0.1822
tracking error at step 30: 0.1393
tracking error at step 31: 0.1023
tracking error at step 32: 0.0715
tracking error at step 33: 0.0472
tracking error at step 34: 0.0301
tracking error at step 35: 0.0217
tracking error at step 36: 0.0218
tracking error at step 37: 0.0251
tracking error at step 38: 0.0279
tracking error at step 39: 0.0291
tracking error at step 40: 0.0290
tracking error at step 41: 0.0277
tracking error at step 42: 0.0254
tracking error at step 43: 0.0227
tracking error at step 44: 0.0197
tracking error at step 45: 0.0167
tracking error at step 46: 0.0140
tracking error at step 47: 0.0116
tracking error at step 48: 0.0097
tracking error at step 49: 0.0082
tracking error at step 50: 0.0072
tracking error at step 51: 0.0067
tracking error at step 52: 0.0065
tracking error at step 53: 0.0065
tracking error at step 54: 0.0065
tracking error at step 55: 0.0064
tracking error at step 56: 0.0063
tracking error at step 57: 0.0062
tracking error at step 58: 0.0061
tracking error at step 59: 0.0059
tracking error at step 60: 0.0058
tracking error at step 61: 0.0056
tracking error at step 62: 0.0055
tracking error at step 63: 0.0054
tracking error at step 64: 0.0053
tracking error at step 65: 0.0052
tracking error at step 66: 0.0052
tracking error at step 67: 0.0052
tracking error at step 68: 0.0052
tracking error at step 69: 0.0052

5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作

./examples/example_codegen
A = [1, 1]
[5, 2]
B = [3, 4]
[3, 1]
Q = [1.1,   0]
[  0, 1.1]
R = [2.1,   0]
[  0, 2.1]
rho = 0.1
Kinf converged after 5 iterations
Precomputing finished
Kinf = [   1.36,  0.5335]
[-0.6323, -0.1066]
Pinf = [8.899, 2.664]
[2.664, 2.046]
Quu_inv = [  0.1076, -0.09799]
[-0.09799,  0.09522]
AmBKt = [-0.5502,   1.553]
[-0.1739,  0.5062]
coeff_d2p = [7.438e-06, 8.381e-06]
[2.127e-06, 2.398e-06]
Creating generated code directory at /home/khai/SSD/Code/TinyMPC/generated_code
ERROR OPENING DATA WORKSPACE FILE
Segmentation fault

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213370.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux系统编程】开发工具yum和vim

目录 一,yum工具的使用 1,yum的介绍 2,yum的使用 二,vim工具的开发 1,vim的介绍 2,模式的使用 3,vim配置文件 4,sudo配置文件 一,yum工具的使用 1,y…

BGP综合

1、使用PreVal策略,确保R4通过R2到达192.168.10.0/24。 2、使用AS_Path策略,确保R4迪过R3到达192.168.11.0/24。 3、配置MED策略,确保R4通过R3到达192.168.12.0/24。 4、使用Local Preference策略,确保R1通过R2到达192.168.1.0…

html动漫网页设计分享 紫罗兰永恒花园网页作业成品带视频,注册登录,表格,表单

html5静态网页设计要是用HTML DIVCSS JS等来完成页面的排版设计,一般的网页作业需要融入以下知识点:div布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,学生网页作业源码可以…

五、HotSpot细节实现

一、并发标记与三色标记 问题:三色标记到底发生在什么阶段,替代了什么。并发标记 1、并发标记( Concurrent Marking) 从 GC Root 开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗…

回归预测 | MATLAB实现CNN-BiLSTM(卷积双向长短期记忆神经网络

效果一览 基本介绍 提出一种同时考虑时间与空间因素的卷积-双向长短期记忆( CNN-BiLSTM)模型,将具有空间局部特征提取能力的卷积神经网络(CNN)和具有能同时考虑前后方向长时间信息的双向长短期记忆&#xf…

PHP 二维码内容解析、二维码识别

目录 1.首先是一些错误的示例 2.正确示例 3.二维码解析 4.完整示例,含生成 5.代码执行结果 6.参考文档 1.首先是一些错误的示例 本示例使用的是php7.3 通过搜索各种结果逐个尝试以后,得出一个可使用版本 解析错误经历:vendor核心报错 …

springboot 极简案例

安装idea File -> New Project 选择依赖 创建controller文件 输入controller类名 输入代码 运行项目 访问 localhost:8080/hello/boot package com.example.demo;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.…

WordCount 源码解析 Mapper,Reducer,Driver

创建包 com.nefu.mapreduce.wordcount ,开始编写 Mapper , Reducer , Driver 用户编写的程序分成三个部分: Mapper 、 Reducer 和 Driver 。 ( 1 ) Mapper 阶段 ➢ 用户自定义的 Mapper 要继承自己的父…

Java最全面试题专题---1、Java基础知识(3)

IO流 java 中 IO 流分为几种? 按照流的流向分,可以分为输入流和输出流;按照操作单元划分,可以划分为字节流和字符流;按照流的角色划分为节点流和处理流。 Java Io流共涉及40多个类,这些类看上去很杂乱,…

【uC/OS-II】

uC/OS-II 1. uC/OS-II1.1 代码组成1.2 任务基本概念1.3 任务控制块![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/23fe7cd390b94b7eb06a110b10165d22.png)1.4 任务的状态与切换1.5 任务创建的代码 2 任务2.1 系统任务2.2 任务管理相关函数2.3 任务基本属性2.4 uC/…

【Spring 源码】 贯穿 Bean 生命周期的核心类之 AbstractAutowireCapableBeanFactory

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

Qt基础-组件的添加、删除或更新

本文介绍如何在Qt中组件的添加、删除或更新。 概述 有时安装完qt后发现当前的组件需要进一步调整,这时就需要进一步操作安装的文件。 QT的组件管理软件并没有在开始菜单或者桌面添加快捷方式(5.9版本),也没有在代码编辑界面设置相关的选项,藏的比较深。 操作步骤 找到…

常见的中间件--消息队列中间件测试点

最近刷题,看到了有问中间件的题目,于是整理了一些中间件的知识,大多是在小破站上的笔记,仅供大家参考~ 主要分为七个部分来分享: 一、常见的中间件 二、什么是队列? 三、常见消息队列MQ的比较 四、队列…

百度APP iOS端包体积50M优化实践(七)编译器优化

一. 前言 百度APP iOS端包体积优化系列文章的前六篇重点介绍了包体积优化整体方案、图片优化、资源优化、代码优化、无用类优化、HEIC图片优化实践和无用方法清理,图片优化是从无用图片、Asset Catalog和HEIC格式三个角度做深度优化;资源优化包括大资源…

大数据技术4:Lambda和Kappa架构区别

前言:在大数据处理领域,两种突出的数据架构已成为处理大量数据的流行选择:Lambda 架构和 Kappa 架构。这些架构为实时处理和批处理提供了强大的技术解决方案,使组织能够从其数据中获得有价值的见解。随着互联网时代来临&#xff0…

金蝶 Apusic 应用服务器任意文件上传漏洞

声明 本文仅用于技术交流,请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任。 1. 产品介绍 金蝶 Apusic 是金蝶集团旗下的一款企业级应用服务器&#…

Apollo新版本Beta自动驾驶技术沙龙参会体验有感—百度自动驾驶开源框架

在繁忙的都市生活中,我们时常对未来的科技发展充满了好奇和期待。而近日,我有幸参加了一场引领科技潮流的线下技术沙龙,主题便是探索自动驾驶的魅力——一个让我们身临其境感受创新、了解技术巨擘的机会。 在12月2日我有幸参加了Apollo新版本…

c/c++中一些不常用但有用的知识

1.变长数组 bool fun(int cnt) {unsigned char data[cnt];return true; } 在 C 语言中,变长数组(Variable Length Arrays,VLA)是 C99 标准引入的特性,允许使用变量来定义数组的长度。因此,在 C 版本的代码…

【51单片机系列】74HC595实现对LED点阵的控制

本文是关于LED点阵的使用,使用74HC595模块实现对LED点阵的控制。 文章目录 一、8x8LED点阵的原理1.1 LED点阵显示原理1.2 LED点阵内部结构图1.3 开发板上的LED点阵原理图1.4 74HC595芯片 二、使用74HC595模块实现流水灯效果三、 使用74HC595模块控制LED点阵对角线亮…

插入排序与希尔排序(C语言实现)

1.插入排序 由上面的动图可以知道插入排序的逻辑就是从第一个元素开始往后遍历,如果找到比前一个元素小的(或者大的)就往前排,所以插入排序的每一次遍历都会保证前面的数据是有序的,接下类用代码进行讲解。 我们这里传…