互联网加竞赛 LSTM的预测算法 - 股票预测 天气预测 房价预测

0 简介

今天学长向大家介绍LSTM基础

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

    future_target = 72x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,TRAIN_SPLIT, past_history,future_target, STEP)x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],TRAIN_SPLIT, None, past_history,future_target, STEP)

划分数据集

    
​    train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
​    train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
​    val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
​        plt.figure(figsize=(12, 6))
​        num_in = create_time_steps(len(history))
​        num_out = len(true_future)
​    plt.plot(num_in, np.array(history[:, 1]), label='History')plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',label='True Future')if prediction.any():plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',label='Predicted Future')plt.legend(loc='upper left')plt.show()for x, y in train_data_multi.take(1):multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

    
​    multi_step_model = tf.keras.models.Sequential()
​    multi_step_model.add(tf.keras.layers.LSTM(32,
​                                              return_sequences=True,
​                                              input_shape=x_train_multi.shape[-2:]))
​    multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
​    multi_step_model.add(tf.keras.layers.Dense(72))
​    multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

    multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_multi,validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

    import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport tensorflow as tfplt.rcParams['font.sans-serif']=['SimHei']#显示中文plt.rcParams['axes.unicode_minus']=False#显示负号


def load_data():
test_x_batch = np.load(r’test_x_batch.npy’,allow_pickle=True)
test_y_batch = np.load(r’test_y_batch.npy’,allow_pickle=True)
return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanhreturn cell#定义lstm网络
def lstm_net(x,w,b,num_neurons):#将输入变成一个列表,列表的长度及时间步数inputs = tf.unstack(x,8,1)cells = [lstm_cell(units=n) for n in num_neurons]stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)return tf.matmul(outputs[-1],w) + b#超参数
num_neurons = [32,32,64,64,128,128]#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())if __name__ == '__main__':#开启交互式Sessionsess = tf.InteractiveSession()saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')#载入数据test_x,test_y = load_data()#预测predicts = sess.run(pred,feed_dict={x:test_x})predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准#可视化plt.plot(predicts,'r',label='预测曲线')plt.plot(test_y,'g',label='真实曲线')plt.xlabel('第几天/days')plt.ylabel('开盘价(归一化)')plt.title('股票开盘价曲线预测(测试集)')plt.legend()plt.show()#关闭会话sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

    import numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport torchimport torch.nn as nnfrom sklearn.preprocessing import MinMaxScalerimport os


# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4 # 序列长度
n_feature = 12 # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。

# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):tmp_x = data[i:i+seq_length, :]tmp_y = data[i+seq_length, :]trainData_x.append(tmp_x)trainData_y.append(tmp_y)# model
class Net(nn.Module):def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):super(Net, self).__init__()self.in_dim = in_dimself.hidden_dim = hidden_dimself.output_dim = output_dimself.n_layer = n_layerself.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)self.linear = nn.Linear(hidden_dim, output_dim)def forward(self, x):_, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state# h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)# n_direction根据是“否为双向”取值为1或2h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)return h_outtrain = True
if train:model = Net()loss_func = torch.nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# trainfor epoch in range(EPOCH):total_loss = 0for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)       # output's shape (1,12)output = torch.squeeze(output)loss = loss_func(output, torch.tensor(trainData_y[iteration]))optimizer.zero_grad()   # clear gradients for this training iterationloss.backward()         # computing gradientsoptimizer.step()        # update weightstotal_loss += lossif (epoch+1) % 20 == 0:print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))# torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')else:# model = torch.load('flight_model.pth')model = Net()checkpoint = torch.load('checkpoint.pth.tar')model.load_state_dict(checkpoint['state_dict'])# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)             # output's shape (1,12)output = torch.squeeze(output)predict.append(output.data.numpy())# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213375.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java一对一聊天程序

我们首先要完成服务端,不然出错,运行也要先运行服务端,如果不先连接服务端,就不监听,那客户端不知道连接谁 服务端 import java.awt.BorderLayout; import java.awt.event.ActionEvent; import java.awt.event.Actio…

数据结构——二叉树的链式结构

个人主页:日刷百题 系列专栏:〖C语言小游戏〗〖Linux〗〖数据结构〗 〖C语言〗 🌎欢迎各位→点赞👍收藏⭐️留言📝 ​ 一、二叉树的创建 这里我们使用先序遍历的思想来创建二叉树,这里的内容对于刚接触二…

TinyMPC - CMU (卡耐基梅隆大学)开源的机器人 MPC 控制器

系列文章目录 CasADi - 最优控制开源 Python/MATLAB 库 文章目录 系列文章目录前言一、机器人硬件对比1.1 Teensy 上的微控制器基准测试1.2 机器人硬件1.3 BibTeX 二、求解器三、功能(预期)3.1 高效3.2 鲁棒3.3 可嵌入式3.4 最小依赖性3.5 高效热启动3.…

【Linux系统编程】开发工具yum和vim

目录 一,yum工具的使用 1,yum的介绍 2,yum的使用 二,vim工具的开发 1,vim的介绍 2,模式的使用 3,vim配置文件 4,sudo配置文件 一,yum工具的使用 1,y…

BGP综合

1、使用PreVal策略,确保R4通过R2到达192.168.10.0/24。 2、使用AS_Path策略,确保R4迪过R3到达192.168.11.0/24。 3、配置MED策略,确保R4通过R3到达192.168.12.0/24。 4、使用Local Preference策略,确保R1通过R2到达192.168.1.0…

html动漫网页设计分享 紫罗兰永恒花园网页作业成品带视频,注册登录,表格,表单

html5静态网页设计要是用HTML DIVCSS JS等来完成页面的排版设计,一般的网页作业需要融入以下知识点:div布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,学生网页作业源码可以…

五、HotSpot细节实现

一、并发标记与三色标记 问题:三色标记到底发生在什么阶段,替代了什么。并发标记 1、并发标记( Concurrent Marking) 从 GC Root 开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗…

回归预测 | MATLAB实现CNN-BiLSTM(卷积双向长短期记忆神经网络

效果一览 基本介绍 提出一种同时考虑时间与空间因素的卷积-双向长短期记忆( CNN-BiLSTM)模型,将具有空间局部特征提取能力的卷积神经网络(CNN)和具有能同时考虑前后方向长时间信息的双向长短期记忆&#xf…

PHP 二维码内容解析、二维码识别

目录 1.首先是一些错误的示例 2.正确示例 3.二维码解析 4.完整示例,含生成 5.代码执行结果 6.参考文档 1.首先是一些错误的示例 本示例使用的是php7.3 通过搜索各种结果逐个尝试以后,得出一个可使用版本 解析错误经历:vendor核心报错 …

springboot 极简案例

安装idea File -> New Project 选择依赖 创建controller文件 输入controller类名 输入代码 运行项目 访问 localhost:8080/hello/boot package com.example.demo;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.…

WordCount 源码解析 Mapper,Reducer,Driver

创建包 com.nefu.mapreduce.wordcount ,开始编写 Mapper , Reducer , Driver 用户编写的程序分成三个部分: Mapper 、 Reducer 和 Driver 。 ( 1 ) Mapper 阶段 ➢ 用户自定义的 Mapper 要继承自己的父…

Java最全面试题专题---1、Java基础知识(3)

IO流 java 中 IO 流分为几种? 按照流的流向分,可以分为输入流和输出流;按照操作单元划分,可以划分为字节流和字符流;按照流的角色划分为节点流和处理流。 Java Io流共涉及40多个类,这些类看上去很杂乱,…

【uC/OS-II】

uC/OS-II 1. uC/OS-II1.1 代码组成1.2 任务基本概念1.3 任务控制块![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/23fe7cd390b94b7eb06a110b10165d22.png)1.4 任务的状态与切换1.5 任务创建的代码 2 任务2.1 系统任务2.2 任务管理相关函数2.3 任务基本属性2.4 uC/…

【Spring 源码】 贯穿 Bean 生命周期的核心类之 AbstractAutowireCapableBeanFactory

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

Qt基础-组件的添加、删除或更新

本文介绍如何在Qt中组件的添加、删除或更新。 概述 有时安装完qt后发现当前的组件需要进一步调整,这时就需要进一步操作安装的文件。 QT的组件管理软件并没有在开始菜单或者桌面添加快捷方式(5.9版本),也没有在代码编辑界面设置相关的选项,藏的比较深。 操作步骤 找到…

常见的中间件--消息队列中间件测试点

最近刷题,看到了有问中间件的题目,于是整理了一些中间件的知识,大多是在小破站上的笔记,仅供大家参考~ 主要分为七个部分来分享: 一、常见的中间件 二、什么是队列? 三、常见消息队列MQ的比较 四、队列…

百度APP iOS端包体积50M优化实践(七)编译器优化

一. 前言 百度APP iOS端包体积优化系列文章的前六篇重点介绍了包体积优化整体方案、图片优化、资源优化、代码优化、无用类优化、HEIC图片优化实践和无用方法清理,图片优化是从无用图片、Asset Catalog和HEIC格式三个角度做深度优化;资源优化包括大资源…

大数据技术4:Lambda和Kappa架构区别

前言:在大数据处理领域,两种突出的数据架构已成为处理大量数据的流行选择:Lambda 架构和 Kappa 架构。这些架构为实时处理和批处理提供了强大的技术解决方案,使组织能够从其数据中获得有价值的见解。随着互联网时代来临&#xff0…

金蝶 Apusic 应用服务器任意文件上传漏洞

声明 本文仅用于技术交流,请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任。 1. 产品介绍 金蝶 Apusic 是金蝶集团旗下的一款企业级应用服务器&#…

Apollo新版本Beta自动驾驶技术沙龙参会体验有感—百度自动驾驶开源框架

在繁忙的都市生活中,我们时常对未来的科技发展充满了好奇和期待。而近日,我有幸参加了一场引领科技潮流的线下技术沙龙,主题便是探索自动驾驶的魅力——一个让我们身临其境感受创新、了解技术巨擘的机会。 在12月2日我有幸参加了Apollo新版本…