ExoPlayer架构详解与源码分析(10)——H264Reader

系列文章目录

ExoPlayer架构详解与源码分析(1)——前言
ExoPlayer架构详解与源码分析(2)——Player
ExoPlayer架构详解与源码分析(3)——Timeline
ExoPlayer架构详解与源码分析(4)——整体架构
ExoPlayer架构详解与源码分析(5)——MediaSource
ExoPlayer架构详解与源码分析(6)——MediaPeriod
ExoPlayer架构详解与源码分析(7)——SampleQueue
ExoPlayer架构详解与源码分析(8)——Loader
ExoPlayer架构详解与源码分析(9)——TsExtractor
ExoPlayer架构详解与源码分析(10)——H264Reader


文章目录

  • 系列文章目录
  • 前言
  • H264结构
  • H264Reader
    • SPS的解析
    • PPS的解析
    • SEI的解析
    • Slice的解析
  • 总结


前言

TsExtractor解封完TS数据后,会根据payload中的视频类型使用指定Reader继续解析,如果payload是H.264格式,就会使用H264Reader来继续解析PES payload部分视频数据流。先上下ProgressiveMediaPeriod的万年老图:
在这里插入图片描述
这部分已经可以和SampQueue关联起来了,也就是说图中sampleData的地方就发生在H264Reader中。

H264结构

在看代码前老规矩,先简单了解下H264的码流结构
H264都是由一个个的NAL基本单元组成的,每个NAL由包含一个HEADER和一个DATA,如下图
在这里插入图片描述
这些基本的NAL可能为多种类型如上图的SPS,PPS,SLICE,这些类型就定义在NAL的Header之中,Header的结构很简单就一个字节,如下表

名称大小(b)说明
forbidden_zero_bit1禁止位,占用NAL头的第一个位,当禁止位值为1时表示语法错误,告诉接收方丢掉该单元,否则为0
nal_ref_idc2指示当前NALU的优先级,或者说重要性,数值越大表明越重要
nal_unit_type5表示NALU的类型

那么nal_unit_type不同值对应什么类型呢看下表

nal_unit_typeNAL类型
0未使用
1不分区、非 IDR 图像的片
2SLICE A 片分区 A
3SLICE B 片分区 B
4SLICE C 片分区 C
5IDR 图像中的片
6Supplemental Enhancement Information(SEI ) 补充增强信息单元
7Sequence Paramater Set(SPS) 序列参数集
8Picture Paramater Set(PPS) 图像参数集
9Access Unit Delimiter(AUD) 分界符
10End Of Seq 序列结束
11End Of Stream 码流结束
12Filler Data 填充
13…23保留
24…31未使用

下面看下几个重要的unitType结构

  • Sequence Paramater Set(SPS) 序列参数集
    SPS结构比较复杂这里挑几个用到的

    名称大小(b)说明
    profile_idc8本视频编码时遵循的profile,profile分为Baseline,Main,Extended等,主要用来规定编码时是否采用某些特性,比如说Baseline profile就规定了只能使用I、P slice进行编码,关于profile的说明可以去查看标准的Annex A。
    constraint_set0_flag1强制使用Baseline profile进行编码
    constraint_set1_flag1强制使用Main profile进行编码
    constraint_set2_flag1强制使用Extended profile进行编码
    level_idc8本视频遵循的level,level主要规定了每秒最多能处理多少个宏块,最大的帧大小,最大的解码缓存,最大比特率等这些性能相关的东西,如果是硬解码,则比较容易出现由于视频level太高而不能解码的情况。
    seq_parameter_set_idue(v)本SPS的ID,这个ID主要是给PPS用的
    separate_colour_plane_flag1separate_colour_plane_flag 等于 1 表示对 4:4:4 色度格式中的三个色彩分量分别进行编码。 如果 separate_colour_plane_flag 的值为 0,则表示不对色彩成分进行单独编码,separate_colour_plane_flag 等于 1 时,主编码图像由三个独立的分量组成,每个分量由一个颜色平面(Y、Cb 或 Cr)的编码采样组成,每个采样使用单色编码语法。在这种情况下,每个色彩平面都与特定的 color_plane_id 值相关联
    log2_max_frame_num_minus4ue(v)指定了变量 MaxFrameNum 的值,值范围应为 0 至 12(含 12), M a x F r a m e N u m = 2 ( l o g 2 m a x f r a m e n u m m i n u s 4 + 4 ) MaxFrameNum = 2^{(log2maxframenumminus4 +4)} MaxFrameNum=2(log2maxframenumminus4+4)
    pic_order_cnt_typeue(v)指定解码图片顺序计数的方法,pic_order_cnt_type 的值范围应为 0 至 2(含 2)
    pic_width_in_mbs_minus1ue(v)图片宽度
    pic_height_in_map_units_minus1ue(v)图片高度
    frame_mbs_only_flag1是否只进行帧编码
    vui_parameters_present_flag1SPS是否包含vui参数, video usability information,在标准的Annex E中有描述,主要包含了视频的比例调整,overscan,视频格式,timing,比特率等信息
    aspect_ratio_info_present_flag1等于 1 表示存在 aspect_ratio_idc,等于 0 表示不存在 aspect_ratio_idc
    aspect_ratio_idc8指定样本的采样纵横比值。当 aspect_ratio_idc 表示 Extended_SAR(扩展 SAR)时,采样纵横比用 sar_width : sar_height 表示,当没有 aspect_ratio_idc 语法元素时,aspect_ratio_idc 值为 0
    sar_width16表示样本纵横比的水平尺寸
    sar_height16表示样本纵横比的垂直尺寸(单位与 sar_width 相同)

    ue(v)、se(v)表示以哥伦布编码的一种变长压缩算法

  • Picture Paramater Set(PPS) 图像参数集
    这里也挑几个用到的讲下

    名称大小(b)说明
    pic_parameter_set_idue(v)当前PPS的ID,供slice RBSP使用
    seq_parameter_set_idue(v)当前PPS所属的SPS的ID
    bottom_field_pic_order_in_frame_present_flag1用于POC计算,请参考h.264的POC计算中的bottom_field_flag
  • Supplemental Enhancement Information(SEI ) 补充增强信息单元
    集成在音视频码流中,用于在音视频内部传递消息,可以保证信息与直播音视频数据的同步,SEI并不是解码过程的必须项,有可能对解码过程(容错、纠错)有帮助,视频传输过程、解封装、解码环节,都可能因为某种原因丢弃SEI ,在视频内容的生成端、传输过程中,都可以插入SEI 信息。插入的信息,和其他视频内容一起经过传输链路到达了消费端。那么在SEI 中可以添加哪些信息呢?传递编码器参数、传递视频版权信息、传递摄像头参数、当然也可以传输字幕信息,后面我们会看到。

  • Slice
    视频中的一帧图像可以理解成由一个或多个Slice组成,每一个Slice总体来看都由两部分组成

    • Slice header,包含着分片类型、分片中的宏块类型、分片帧的数量以及对应的帧的设置和参数等信息,slice body中的宏块在进行解码时需依赖这些信息
      来看下Header 的结构

      名称大小(b)说明
      first_mb_in_sliceue(v)当前slice中包含的第一个宏块在整帧中的位置
      slice_typeue(v)当前slice的类型参照下表
      pic_parameter_set_idue(v)当前slice所依赖的pps的id;范围 0 到 255
      colour_plane_id2当标识位separate_colour_plane_flag为true时,colour_plane_id表示当前的颜色分量,0、1、2分别表示Y、U、V分量
      frame_numue(v)表示当前帧序号,数据长度参考上面的log2_max_frame_num_minus4
      field_pic_flag1场编码标识位。当该标识位为1时表示当前slice按照场进行编码;该标识位为0时表示当前 slice按照帧进行编码
      bottom_field_flag1底场标识位。该标志位为1表示当前slice是某一帧的底场;为0表示当前slice为某一帧的顶场
      idr_pic_idue(v)表示IDR帧的序号。某一个IDR帧所属的所有slice,其idr_pic_id应保持一致。该值的取值范围为[0,65535]。
      pic_order_cnt_lsbue(v)表示当前帧序号的另一种计量方式
      delta_pic_order_cnt_bottomse(v)表示顶场与底场POC差值的计算方法,不存在则默认为0
      delta_pic_order_cnt[0]se(v)指定编码帧顶部字段的图片顺序计数与预期图片顺序计数的差值
      delta_pic_order_cnt[1]se(v)指定图像顺序计数与编码帧底层字段的预期图像顺序计数的差值
      slice_typeName of slice_type
      0P (P slice)
      1B (B slice)
      2I (I slice)
      3SP (SP slice)
      4SI (SI slice)
      5P (P slice)
      6B (B slice)
      7I (I slice)
      8SP (SP slice)
      9SI (SI slice)
    • Slice body,通常是一组连续的宏块结构(参照上图),这里就是最终存储像素数据的地方了。宏块中还包含了宏块类型、预测类型、Coded Block Pattern、Quantization Parameter、像素的亮度和色度数据集等等信息。具体结构这个里不是重点不展开。
      在这里插入图片描述
      一个视频由多个帧组成,一帧由多个Slice(片)组成,一个Slice由多个宏块组成,一个宏块又由多个(如4X4)的YUV像素数据组成。

看完了这些SPS、PPS、SLICE他们之间关系是怎么样的呢
在这里插入图片描述
Slice里的pic_parameter_set_id指向了PPS里的pic_parameter_set_id,而PPS里的seq_parameter_set_id又指向了SPS(序列参数集)里的seq_parameter_set_id,这样一个SPS关联多个PPS,而一个PPS又关联了多个Slice;解码器解码Slice时就通过这些ID查询相关的PPS、SPS获取解码所需的必要信息。

在网络传输流的过程中编码器可能会将每个NAL单元放入到单个独立的网络传输块中,如TS中可能一个包中之包含一个NAL,解码器可以很容易的检测出NAL的分界,然后依次取出NAL来解码,但是实际可能一个包里会包含一个PES头这个头后面跟随了多个NAL单元这种情况该如何找到这些NAL单元的分界呢?

很简单,给NAL前添加0x000001头3个字节,某些情况下会要求NAL长度对齐不足的部分填充0,所以H.264规定当检测到0x000000这3个字节的时候也表示当前NAL结束,这样感觉已经可以解决分界问题了。

但是如果NAL内部数据出现0x000001或者0x000000字段怎么办呢,解码器会误以为这里是新的NAL的开始,导致数据解码出错,于是H.264规定了另一个规则 emulation prevention,在编码器编码完一个NAL时,会再去检测当前NAL中是否包含上述2种字节序列,如果检测出则在最后一个字节前插入一个新字节0x03,当解码器在NAL内部检测到有0x000003 字节序列时,就会把0x03丢弃,恢复数据。

如0x000001 最后一个字节添加0x03 变成0x00000301,解码器丢弃后又变成0x000001。
源码里的ParsableNalUnitBitArray 和NalUnitUtil.unescapeStream方法就是用来丢弃0x03的。

H264Reader

了解了上面的知识,基本就可以开始看代码实现了,这部分最好联系上文ExoPlayer架构详解与源码分析(7)——SampleQueue一起看。

@Overridepublic void consume(ParsableByteArray data) {assertTracksCreated();int offset = data.getPosition();int limit = data.limit();byte[] dataArray = data.getData();// 将当前数据长度计入总长度,此时总数据的尾部和当前数据的尾部就是对齐的totalBytesWritten += data.bytesLeft();//到这里已经是解复用后的数据了,将数据发给SampleQueueoutput.sampleData(data, data.bytesLeft());// 循环读取到NAL单元结束while (true) {//通过判断是否为0x000001 3字节,确定NAL开始位置,prefixFlags用于保存上一次循环里的3字节信息,防止目标字节被循环分割int nalUnitOffset = NalUnitUtil.findNalUnit(dataArray, offset, limit, prefixFlags);if (nalUnitOffset == limit) {// 读取到最后一个字节,循环结束nalUnitData(dataArray, offset, limit);return;}// 知道起始位置后,获取第四个字节后5位就是NAL的类型int nalUnitType = NalUnitUtil.getNalUnitType(dataArray, nalUnitOffset);//获取NAL开始位置到当前位置的偏移量,当NAL单元开始位置在上一段数据中时,这个值为负值int lengthToNalUnit = nalUnitOffset - offset;if (lengthToNalUnit > 0) {//将当前位置到下一个NAL开始位置的数据输入nalUnitData(dataArray, offset, nalUnitOffset);}//用当前数据的结束位置-相对于当前数据的NAL开始位置,得到就是当前NAL开始位置到当前数据的结束距离int bytesWrittenPastPosition = limit - nalUnitOffset;//由于当前的结束位置和整个的结束位置是对齐的,用整个数据的长度减轻到结尾的距离,就是这个NAL相对于整个数据的绝对位置long absolutePosition = totalBytesWritten - bytesWrittenPastPosition;// 如果到下一个单元开始的长度为负,那么我们向 NAL 缓冲区写入了过多字节。当通知NAL结束时丢弃多余的字节。endNalUnit(absolutePosition,bytesWrittenPastPosition,lengthToNalUnit < 0 ? -lengthToNalUnit : 0,pesTimeUs);// 下个NAL单元开始startNalUnit(absolutePosition, nalUnitType, pesTimeUs);// 从NAL单元开始位置读取3个字节offset = nalUnitOffset + 3;}}//结束NAL单元private void endNalUnit(long position, int offset, int discardPadding, long pesTimeUs) {if (!hasOutputFormat || sampleReader.needsSpsPps()) {sps.endNalUnit(discardPadding);pps.endNalUnit(discardPadding);if (!hasOutputFormat) {//保证只执行一次if (sps.isCompleted() && pps.isCompleted()) {//sps和pps都已经endNalUnitList<byte[]> initializationData = new ArrayList<>();initializationData.add(Arrays.copyOf(sps.nalData, sps.nalLength));initializationData.add(Arrays.copyOf(pps.nalData, pps.nalLength));//解析出SPS数据NalUnitUtil.SpsData spsData = NalUnitUtil.parseSpsNalUnit(sps.nalData, 3, sps.nalLength);//解析出PPS数据NalUnitUtil.PpsData ppsData = NalUnitUtil.parsePpsNalUnit(pps.nalData, 3, pps.nalLength);//构建codecs 参数,最终用于 MediaCodec 的 configure,确定解码器String codecs =CodecSpecificDataUtil.buildAvcCodecString(spsData.profileIdc,spsData.constraintsFlagsAndReservedZero2Bits,spsData.levelIdc);//通过SPS和PPS构建Format输出给SampleQueueoutput.format(new Format.Builder().setId(formatId).setSampleMimeType(MimeTypes.VIDEO_H264).setCodecs(codecs).setWidth(spsData.width).setHeight(spsData.height).setPixelWidthHeightRatio(spsData.pixelWidthHeightRatio).setInitializationData(initializationData).build());hasOutputFormat = true;sampleReader.putSps(spsData);sampleReader.putPps(ppsData);sps.reset();pps.reset();}} else if (sps.isCompleted()) {NalUnitUtil.SpsData spsData = NalUnitUtil.parseSpsNalUnit(sps.nalData, 3, sps.nalLength);sampleReader.putSps(spsData);sps.reset();} else if (pps.isCompleted()) {NalUnitUtil.PpsData ppsData = NalUnitUtil.parsePpsNalUnit(pps.nalData, 3, pps.nalLength);sampleReader.putPps(ppsData);pps.reset();}}if (sei.endNalUnit(discardPadding)) {//丢弃0x03字节int unescapedLength = NalUnitUtil.unescapeStream(sei.nalData, sei.nalLength);seiWrapper.reset(sei.nalData, unescapedLength);seiWrapper.setPosition(4); // NAL prefix and nal_unit() header.//解析SEI,解析这部分主演是防止SEI中包含字幕信息,将SEI中的字幕轨道提取出来seiReader.consume(pesTimeUs, seiWrapper);}boolean sampleIsKeyFrame =sampleReader.endNalUnit(position, offset, hasOutputFormat, randomAccessIndicator);if (sampleIsKeyFrame) {//这要么是 IDR 帧,要么是自随机访问指示符以来的第一个 I 帧,因此将其标记为关键帧。清除该标志,以便后续的非 IDR I 帧不会被标记为关键帧,直到我们看到另一个随机访问指示符。randomAccessIndicator = false;}}//sampleReader.endNalUnitpublic boolean endNalUnit(long position, int offset, boolean hasOutputFormat, boolean randomAccessIndicator) {if (nalUnitType == NalUnitUtil.NAL_UNIT_TYPE_AUD//遇到一个AUD就sample一次Metadata|| (detectAccessUnits && sliceHeader.isFirstVclNalUnitOfPicture(previousSliceHeader))) {// If the NAL unit ending is the start of a new sample, output the previous one.if (hasOutputFormat && readingSample) {//Fromat未解析出也就是SPS PPS未解析完成,跳过//position为当前AUD结束位置,nalUnitLength 就是AUD长度,一般都是5int nalUnitLength = (int) (position - nalUnitStartPosition);//这里的offset 为当前AUD结尾到sampleData结尾的距离//offset +nalUnitLength后相当于AUD开始位置到sampleData结尾的距离,相当于当前Metadata 结束位置到SampleData结尾的距离outputSample(offset + nalUnitLength);}samplePosition = nalUnitStartPosition;//标记当前Metadata 开始位置sampleTimeUs = nalUnitTimeUs;//标记当前Metadata 开始时间sampleIsKeyframe = false;readingSample = true;//标记当前Metadata 开始}boolean treatIFrameAsKeyframe =allowNonIdrKeyframes ? sliceHeader.isISlice() : randomAccessIndicator;sampleIsKeyframe |=nalUnitType == NalUnitUtil.NAL_UNIT_TYPE_IDR|| (treatIFrameAsKeyframe && nalUnitType == NalUnitUtil.NAL_UNIT_TYPE_NON_IDR);return sampleIsKeyframe;}private void outputSample(int offset) {if (sampleTimeUs == C.TIME_UNSET) {return;}@C.BufferFlags int flags = sampleIsKeyframe ? C.BUFFER_FLAG_KEY_FRAME : 0;//计算当前Metadata 的有效长度,从第一个AUD开始到下一个AUD的开始位置长度int size = (int) (nalUnitStartPosition - samplePosition);//将Metadata Sample,计算Metadata 在SampleData中起始位置时,就可以用SampleData总长度-Metadata 的长度-Metadata 结束位置到SampleData结尾的距离output.sampleMetadata(sampleTimeUs, flags, size, offset, null);}

SPS的解析

public static SpsData parseSpsNalUnitPayload(byte[] nalData, int nalOffset, int nalLimit) {ParsableNalUnitBitArray data = new ParsableNalUnitBitArray(nalData, nalOffset, nalLimit);int profileIdc = data.readBits(8);//获取profileIdc 主要用于Codec的构建int constraintsFlagsAndReservedZero2Bits = data.readBits(8);//获取后面几个Flag主要用于Codec的构建int levelIdc = data.readBits(8);//获取levelIdc 主要用于Codec的构建int seqParameterSetId = data.readUnsignedExpGolombCodedInt();//获取SPS的IDint chromaFormatIdc = 1; // Default is 4:2:0boolean separateColorPlaneFlag = false;if (profileIdc == 100|| profileIdc == 110|| profileIdc == 122|| profileIdc == 244|| profileIdc == 44|| profileIdc == 83|| profileIdc == 86|| profileIdc == 118|| profileIdc == 128|| profileIdc == 138) {chromaFormatIdc = data.readUnsignedExpGolombCodedInt();if (chromaFormatIdc == 3) {separateColorPlaneFlag = data.readBit();//获取separate_colour_plane_flag}data.readUnsignedExpGolombCodedInt(); // bit_depth_luma_minus8data.readUnsignedExpGolombCodedInt(); // bit_depth_chroma_minus8data.skipBit(); // qpprime_y_zero_transform_bypass_flagboolean seqScalingMatrixPresentFlag = data.readBit();if (seqScalingMatrixPresentFlag) {int limit = (chromaFormatIdc != 3) ? 8 : 12;for (int i = 0; i < limit; i++) {boolean seqScalingListPresentFlag = data.readBit();if (seqScalingListPresentFlag) {skipScalingList(data, i < 6 ? 16 : 64);}}}}int frameNumLength = data.readUnsignedExpGolombCodedInt() + 4; // log2_max_frame_num_minus4 + 4int picOrderCntType = data.readUnsignedExpGolombCodedInt();//pic_order_cnt_typeint picOrderCntLsbLength = 0;boolean deltaPicOrderAlwaysZeroFlag = false;if (picOrderCntType == 0) {// log2_max_pic_order_cnt_lsb_minus4 + 4picOrderCntLsbLength = data.readUnsignedExpGolombCodedInt() + 4;} else if (picOrderCntType == 1) {deltaPicOrderAlwaysZeroFlag = data.readBit(); // delta_pic_order_always_zero_flagdata.readSignedExpGolombCodedInt(); // offset_for_non_ref_picdata.readSignedExpGolombCodedInt(); // offset_for_top_to_bottom_fieldlong numRefFramesInPicOrderCntCycle = data.readUnsignedExpGolombCodedInt();for (int i = 0; i < numRefFramesInPicOrderCntCycle; i++) {data.readUnsignedExpGolombCodedInt(); // offset_for_ref_frame[i]}}int maxNumRefFrames = data.readUnsignedExpGolombCodedInt(); // max_num_ref_framesdata.skipBit(); // gaps_in_frame_num_value_allowed_flagint picWidthInMbs = data.readUnsignedExpGolombCodedInt() + 1;//pic_width_in_mbs_minus1int picHeightInMapUnits = data.readUnsignedExpGolombCodedInt() + 1;//pic_height_in_map_units_minus1boolean frameMbsOnlyFlag = data.readBit();//frame_mbs_only_flagint frameHeightInMbs = (2 - (frameMbsOnlyFlag ? 1 : 0)) * picHeightInMapUnits;if (!frameMbsOnlyFlag) {data.skipBit(); // mb_adaptive_frame_field_flag}data.skipBit(); // direct_8x8_inference_flag//下面确定视频帧的高宽int frameWidth = picWidthInMbs * 16;int frameHeight = frameHeightInMbs * 16;boolean frameCroppingFlag = data.readBit();if (frameCroppingFlag) {//获取裁剪后的高宽int frameCropLeftOffset = data.readUnsignedExpGolombCodedInt();int frameCropRightOffset = data.readUnsignedExpGolombCodedInt();int frameCropTopOffset = data.readUnsignedExpGolombCodedInt();int frameCropBottomOffset = data.readUnsignedExpGolombCodedInt();int cropUnitX;int cropUnitY;if (chromaFormatIdc == 0) {cropUnitX = 1;cropUnitY = 2 - (frameMbsOnlyFlag ? 1 : 0);} else {int subWidthC = (chromaFormatIdc == 3) ? 1 : 2;int subHeightC = (chromaFormatIdc == 1) ? 2 : 1;cropUnitX = subWidthC;cropUnitY = subHeightC * (2 - (frameMbsOnlyFlag ? 1 : 0));}frameWidth -= (frameCropLeftOffset + frameCropRightOffset) * cropUnitX;frameHeight -= (frameCropTopOffset + frameCropBottomOffset) * cropUnitY;}@C.ColorSpace int colorSpace = Format.NO_VALUE;@C.ColorRange int colorRange = Format.NO_VALUE;@C.ColorTransfer int colorTransfer = Format.NO_VALUE;//确定宽高比float pixelWidthHeightRatio = 1;boolean vuiParametersPresentFlag = data.readBit();if (vuiParametersPresentFlag) {//vui_parameters_present_flag包含VUI数据boolean aspectRatioInfoPresentFlag = data.readBit();if (aspectRatioInfoPresentFlag) {//aspect_ratio_info_present_flagint aspectRatioIdc = data.readBits(8);//aspect_ratio_idcif (aspectRatioIdc == NalUnitUtil.EXTENDED_SAR) {//自定义了宽高比int sarWidth = data.readBits(16);//sar_widthint sarHeight = data.readBits(16);//sar_heightif (sarWidth != 0 && sarHeight != 0) {pixelWidthHeightRatio = (float) sarWidth / sarHeight;}} else if (aspectRatioIdc < NalUnitUtil.ASPECT_RATIO_IDC_VALUES.length) {//无自定义获取已定义的宽高比pixelWidthHeightRatio = NalUnitUtil.ASPECT_RATIO_IDC_VALUES[aspectRatioIdc];} else {Log.w(TAG, "Unexpected aspect_ratio_idc value: " + aspectRatioIdc);}}if (data.readBit()) { // overscan_info_present_flagdata.skipBit(); // overscan_appropriate_flag}if (data.readBit()) { // video_signal_type_present_flagdata.skipBits(3); // video_formatcolorRange =data.readBit() ? C.COLOR_RANGE_FULL : C.COLOR_RANGE_LIMITED; // video_full_range_flagif (data.readBit()) { // colour_description_present_flagint colorPrimaries = data.readBits(8); // colour_primariesint transferCharacteristics = data.readBits(8); // transfer_characteristicsdata.skipBits(8); // matrix_coeffscolorSpace = ColorInfo.isoColorPrimariesToColorSpace(colorPrimaries);colorTransfer =ColorInfo.isoTransferCharacteristicsToColorTransfer(transferCharacteristics);}}}return new SpsData(profileIdc,constraintsFlagsAndReservedZero2Bits,levelIdc,seqParameterSetId,maxNumRefFrames,frameWidth,frameHeight,pixelWidthHeightRatio,separateColorPlaneFlag,frameMbsOnlyFlag,frameNumLength,picOrderCntType,picOrderCntLsbLength,deltaPicOrderAlwaysZeroFlag,colorSpace,colorRange,colorTransfer);}

SPS这主要获取的SPS 的ID,编码的profile,帧宽高,以及宽高比,到这里基本可以确定解码器,确定出视频的宽高等全局参数。

PPS的解析

  public static PpsData parsePpsNalUnitPayload(byte[] nalData, int nalOffset, int nalLimit) {ParsableNalUnitBitArray data = new ParsableNalUnitBitArray(nalData, nalOffset, nalLimit);int picParameterSetId = data.readUnsignedExpGolombCodedInt();//pic_parameter_set_id PPS的IDint seqParameterSetId = data.readUnsignedExpGolombCodedInt();//seq_parameter_set_id SPS的IDdata.skipBit(); // entropy_coding_mode_flagboolean bottomFieldPicOrderInFramePresentFlag = data.readBit();//bottom_field_pic_order_in_frame_present_flagreturn new PpsData(picParameterSetId, seqParameterSetId, bottomFieldPicOrderInFramePresentFlag);}

PPS的解析就简单多了主要或bottom_field_pic_order_in_frame_present_flag这一个值。

SEI的解析

public static void consume(long presentationTimeUs, ParsableByteArray seiBuffer, TrackOutput[] outputs) {while (seiBuffer.bytesLeft() > 1 /* last byte will be rbsp_trailing_bits */) {int payloadType = readNon255TerminatedValue(seiBuffer);//SEI的类型int payloadSize = readNon255TerminatedValue(seiBuffer);//SEI大小int nextPayloadPosition = seiBuffer.getPosition() + payloadSize;// Process the payload.if (payloadSize == -1 || payloadSize > seiBuffer.bytesLeft()) {// This might occur if we're trying to read an encrypted SEI NAL unit.Log.w(TAG, "Skipping remainder of malformed SEI NAL unit.");nextPayloadPosition = seiBuffer.limit();} else if (payloadType == PAYLOAD_TYPE_CC && payloadSize >= 8) {//字幕类型的数据int countryCode = seiBuffer.readUnsignedByte();//获取国家int providerCode = seiBuffer.readUnsignedShort();//获取地区int userIdentifier = 0;if (providerCode == PROVIDER_CODE_ATSC) {userIdentifier = seiBuffer.readInt();}int userDataTypeCode = seiBuffer.readUnsignedByte();if (providerCode == PROVIDER_CODE_DIRECTV) {seiBuffer.skipBytes(1); // user_data_length.}boolean messageIsSupportedCeaCaption =countryCode == COUNTRY_CODE&& (providerCode == PROVIDER_CODE_ATSC || providerCode == PROVIDER_CODE_DIRECTV)&& userDataTypeCode == USER_DATA_TYPE_CODE_MPEG_CC;if (providerCode == PROVIDER_CODE_ATSC) {messageIsSupportedCeaCaption &= userIdentifier == USER_DATA_IDENTIFIER_GA94;}if (messageIsSupportedCeaCaption) {//开始解析字幕consumeCcData(presentationTimeUs, seiBuffer, outputs);}}seiBuffer.setPosition(nextPayloadPosition);}}public static void consumeCcData(long presentationTimeUs, ParsableByteArray ccDataBuffer, TrackOutput[] outputs) {// First byte contains: reserved (1), process_cc_data_flag (1), zero_bit (1), cc_count (5).int firstByte = ccDataBuffer.readUnsignedByte();boolean processCcDataFlag = (firstByte & 0x40) != 0;if (!processCcDataFlag) {// No need to process.return;}int ccCount = firstByte & 0x1F;ccDataBuffer.skipBytes(1); // Ignore em_data// Each data packet consists of 24 bits: marker bits (5) + cc_valid (1) + cc_type (2)// + cc_data_1 (8) + cc_data_2 (8).int sampleLength = ccCount * 3;int sampleStartPosition = ccDataBuffer.getPosition();for (TrackOutput output : outputs) {ccDataBuffer.setPosition(sampleStartPosition);output.sampleData(ccDataBuffer, sampleLength);//发送数据到SamleQueueif (presentationTimeUs != C.TIME_UNSET) {output.sampleMetadata(//字幕轨道sampleMetadatapresentationTimeUs,C.BUFFER_FLAG_KEY_FRAME,sampleLength,/* offset= */ 0,/* cryptoData= */ null);}}}

可以看到这里解析SEI主要是为了获取其中的字幕信息,如果没有字幕信息,SEI可以直接忽略

Slice的解析

定义在SampleReader中。

public void appendToNalUnit(byte[] data, int offset, int limit) {if (!isFilling) {//数据还没有填充足够,返回继续填充return;}int readLength = limit - offset;if (buffer.length < bufferLength + readLength) {buffer = Arrays.copyOf(buffer, (bufferLength + readLength) * 2);}System.arraycopy(data, offset, buffer, bufferLength, readLength);bufferLength += readLength;bitArray.reset(buffer, 0, bufferLength);if (!bitArray.canReadBits(8)) {return;}bitArray.skipBit(); // forbidden_zero_bitint nalRefIdc = bitArray.readBits(2);//nal_ref_idc优先级bitArray.skipBits(5); // nal_unit_type// Read the slice header using the syntax defined in ITU-T Recommendation H.264 (2013)// subsection 7.3.3.if (!bitArray.canReadExpGolombCodedNum()) {return;}bitArray.readUnsignedExpGolombCodedInt(); // first_mb_in_sliceif (!bitArray.canReadExpGolombCodedNum()) {return;}int sliceType = bitArray.readUnsignedExpGolombCodedInt();//slice_typeif (!detectAccessUnits) {// There are AUDs in the stream so the rest of the header can be ignored.isFilling = false;sliceHeader.setSliceType(sliceType);return;}if (!bitArray.canReadExpGolombCodedNum()) {return;}int picParameterSetId = bitArray.readUnsignedExpGolombCodedInt();//获取 PPS IDif (pps.indexOfKey(picParameterSetId) < 0) {// We have not seen the PPS yet, so don't try to decode the slice header.isFilling = false;return;}NalUnitUtil.PpsData ppsData = pps.get(picParameterSetId);//首先通过当前Slice的PPS ID 获取到PPSNalUnitUtil.SpsData spsData = sps.get(ppsData.seqParameterSetId);//再通过PPS的ID获取到SPS数据if (spsData.separateColorPlaneFlag) {//separate_colour_plane_flag为1说明存在colour_plane_idif (!bitArray.canReadBits(2)) {return;}bitArray.skipBits(2); // 跳过colour_plane_id}if (!bitArray.canReadBits(spsData.frameNumLength)) {return;}boolean fieldPicFlag = false;boolean bottomFieldFlagPresent = false;boolean bottomFieldFlag = false;//通过SPS 获取到的帧序号长度读取帧序号int frameNum = bitArray.readBits(spsData.frameNumLength);if (!spsData.frameMbsOnlyFlag) {//frame_mbs_only_flag 不只进行帧编码if (!bitArray.canReadBits(1)) {return;}fieldPicFlag = bitArray.readBit();if (fieldPicFlag) {//field_pic_flag 还存在场编码if (!bitArray.canReadBits(1)) {return;}bottomFieldFlag = bitArray.readBit();//bottom_field_flag 底场标识位bottomFieldFlagPresent = true;}}boolean idrPicFlag = nalUnitType == NalUnitUtil.NAL_UNIT_TYPE_IDR;//IDR 类型的NALint idrPicId = 0;if (idrPicFlag) {if (!bitArray.canReadExpGolombCodedNum()) {return;}idrPicId = bitArray.readUnsignedExpGolombCodedInt();//idr_pic_id IDR帧的序号}int picOrderCntLsb = 0;int deltaPicOrderCntBottom = 0;int deltaPicOrderCnt0 = 0;int deltaPicOrderCnt1 = 0;if (spsData.picOrderCountType == 0) {if (!bitArray.canReadBits(spsData.picOrderCntLsbLength)) {return;}picOrderCntLsb = bitArray.readBits(spsData.picOrderCntLsbLength);//pic_order_cnt_lsbif (ppsData.bottomFieldPicOrderInFramePresentFlag && !fieldPicFlag) {if (!bitArray.canReadExpGolombCodedNum()) {return;}deltaPicOrderCntBottom = bitArray.readSignedExpGolombCodedInt();//delta_pic_order_cnt_bottom}} else if (spsData.picOrderCountType == 1 && !spsData.deltaPicOrderAlwaysZeroFlag) {if (!bitArray.canReadExpGolombCodedNum()) {return;}deltaPicOrderCnt0 = bitArray.readSignedExpGolombCodedInt();//delta_pic_order_cnt[0]if (ppsData.bottomFieldPicOrderInFramePresentFlag && !fieldPicFlag) {if (!bitArray.canReadExpGolombCodedNum()) {return;}deltaPicOrderCnt1 = bitArray.readSignedExpGolombCodedInt();//delta_pic_order_cnt[1]}}sliceHeader.setAll(spsData,nalRefIdc,sliceType,frameNum,picParameterSetId,fieldPicFlag,bottomFieldFlagPresent,bottomFieldFlag,idrPicFlag,idrPicId,picOrderCntLsb,deltaPicOrderCntBottom,deltaPicOrderCnt0,deltaPicOrderCnt1);isFilling = false;}

Slice解析主要是解析了Slice的Header,用于判断是否为I帧以及判断当前NAL是否为图像的第一个VCL类的NAL,这些数据主要用于没有AUD时确定SampleMetadata的时机。
下面我们来动态看下SampleMetadata基于流的时序关系图:
在这里插入图片描述
对照上图可以看出,H264Reader 一开始就会将所有数据Sample到SampleQueue,接下来会查找第一个NAL开始位置,如果读取到第一个AUD,记录AUD开始位置为samplePosition,作为这段SampleData的有效开始位置,下面数据序列首先会将SPS,PPS这2个索引的NAL放在前面,等解码器获取了SPS和PPS基本上就能确定解码器的具体配置,这个时候会调用SampleQueue的format方法将解码器格式输出,用于解码器的初始化等。当读取到下一个AUD的时候将这个AUD的开始位置作为有效SampleData的结束位置,通过有效结束位置(absolutePosition)-有效开始位置(samplePosition)获得当前有效数据长度(size),同时通过当前AUD的长度(nalUnitLength)+下一个NAL头到数据段末尾的距离(bytesWrittenPastPosition)得到offset,将size和offset传给SampleQueue的sampleMetadata方法,sampleMetadata里通过数据总长度-size-offset确定当前SampleData有效数据的开始位置,这样就记录了每个Sample的开始位置和长度,当Rendere读取数据用于解码时,就可以查询这个开始位置和长度读取有效的视频数据给解码器。


总结

到这里ProgressiveMediaPeriod的数据解析部分终于讲完,那么这些解析的数据是如何加载的呢,这就是ProgressiveMediaPeriod整体架构右半部分的最后一块拼图——DataSource,这也是我们后面要讲的内容了。


版权声明 ©
本文为CSDN作者山雨楼原创文章
转载请注明出处
原创不易,觉得有用的话,收藏转发点赞支持

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213989.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iOS(swiftui)——系统悬浮窗( 可在其他应用上显示,可实时更新内容)

因为ios系统对权限的限制是比较严格的,ios系统本身是不支持全局悬浮窗(可在其他app上显示)。在iphone14及之后的iPhone机型中提供了一个叫 灵动岛的功能,可以在手机上方可以添加一个悬浮窗显示内容并实时更新,但这个功能有很多局限性 如:需要iPhone14及之后的机型且系统…

软件测试相关

软件测试是什么&#xff1f; 使用人工和自动手段来运行或测试某个系统的过程&#xff0c;其目的在于验证它是否满足规定的需求或弄清预期结果与实际结果的差别。 为什么做软件测试&#xff1f;目的是什么&#xff1f; 发现软件存在的代码或业务逻辑错误 检验产品是否符合用户需…

基于Lucene的全文检索系统的实现与应用

文章目录 一、概念二、引入案例1、数据库搜索2、数据分类3、非结构化数据查询方法1&#xff09; 顺序扫描法(Serial Scanning)2&#xff09;全文检索(Full-text Search) 4、如何实现全文检索 三、Lucene实现全文检索的流程1、索引和搜索流程图2、创建索引1&#xff09;获取原始…

掌控安全 暖冬杯 CTF Writeup By AheadSec

本来结束时发到了学校AheadSec的群里面了的&#xff0c;觉得这比赛没啥好外发WP的&#xff0c;但是有些师傅来问了&#xff0c;所以还是发一下吧。 文章目录 Web签到&#xff1a;又一个计算题计算器PHP反序列化又一个PHP反序列化 Misc这是邹节伦的桌面背景图什么鬼&#xff1f;…

Dockerfile部署Java项目挂载使用外部配置文件

Dockerfile部署Java项目挂载使用外部配置文件 技术博客 http://idea.coderyj.com/ 需求是由于java项目使用的是nacos 而且每次部署nacos服务器ip不一样导致要重新打包,想引入外部配置文件进行打包 1.需求是由于java项目使用的是nacos 而且每次部署nacos服务器ip不一样导致要重新…

B 站基于 StarRocks 构建大数据元仓

作者&#xff1a;bilibili 大数据高级开发工程师 杨洋 B站大数据元仓是一款用来观测大数据引擎运行情况、推动大作业治理的系统诊断产品。经过调研和性能测试&#xff0c;大数据元仓最终以 StarRocks 为技术底座&#xff0c;从实际的应用效果来看&#xff0c;大部分查询都能在几…

【VS Code】Visual Studio Code 你必须安装的 Plugins - 持续更新

文章目录 GitLens — Git supercharged【真香】EditorConfig for VS Code【真香】Remote - SSH【真香】MySQL【真香】 Talk is cheap, show me the code. GitLens — Git supercharged【真香】 插件地址&#xff1a; https://marketplace.visualstudio.com/items?itemNameeam…

5G - NR物理层解决方案支持6G非地面网络中的高移动性

文章目录 非地面网络场景链路仿真参数实验仿真结果 非地面网络场景 链路仿真参数 实验仿真结果 Figure 5 && Figure 6&#xff1a;不同信噪比下的BER和吞吐量 变量 SISO 2x2MIMO 2x4MIMO 2x8MIMOReyleigh衰落、Rician衰落、多径TDL-A(NLOS) 、TDL-E(LOS)(a)QPSK (b)16…

cache教程 3.HTTP服务器

上一节我们实现了单机版的缓存服务&#xff0c;但是我们的目标是分布式缓存。那么&#xff0c;我们就需要把缓存服务部署到多态机器节点上&#xff0c;对外提供访问接口。客户端就可以通过这些接口去实现缓存的增删改查。 分布式缓存需要实现节点间通信&#xff0c;而通信方法…

【ArcGIS Pro微课1000例】0049:根据坐标快速定位(创建点位)的常见方法

文章目录 一、转到XY1. 闪烁位置2. 平移3. 标记位置二、定位1. 坐标定位2. 添加到图形3. 添加至要素类三、添加XY坐标四、创建点要素一、转到XY 举例:经纬度坐标:113.2583286东, 23.1492340北 。 1. 闪烁位置 输入坐标,点击闪烁位置工具,即可在对应的位置出现一个绿色闪烁…

Bash脚本处理ogg、flac格式到mp3格式的批量转换

现在下载的许多音乐文件是flac和ogg格式的&#xff0c;QQ音乐上下载的就是这样的&#xff0c;这些文件尺寸比较大&#xff0c;在某些场合使用不便&#xff0c;比如在车机上播放还是mp3格式合适&#xff0c;音质这些在车机上播放足够了&#xff0c;要求不高。比如本人就喜欢下载…

西南科技大学C++程序设计实验十(函数模板与类模板)

一、实验目的 1. 掌握函数模板与类模板; 2. 掌握数组类、链表类等线性群体数据类型定义与使用; 二、实验任务 1. 分析完善以下程序,理解模板类的使用: (1)补充类模板声明语句。 (2)创建不同类型的类对象,使用时明确其数据类型? _template<typename T>__…

最简单的基于 FFmpeg 的音频解码器

最简单的基于 FFmpeg 的音频解码器 最简单的基于 FFmpeg 的音频解码器正文参考工程文件下载 参考雷霄骅博士的文章&#xff0c;链接&#xff1a;最简单的基于FFMPEGSDL的音频播放器&#xff1a;拆分-解码器和播放器 最简单的基于 FFmpeg 的音频解码器 正文 FFmpeg 音频解码器…

『 MySQL数据库 』聚合统计

文章目录 前言 &#x1f951;&#x1f95d; 聚合函数&#x1f353; COUNT( ) 查询数据数量&#x1f353; SUM( ) 查询数据总和&#x1f353; AVG( ) 查询数据平均值&#x1f353; MAX( ) 查询数据最大值&#x1f353; MIN( ) 查询数据最小值 &#x1f95d; 数据分组GROUP BY子句…

Rellax.js,一款超酷的 JavaScript 滚动效果库

嗨&#xff0c;大家好&#xff0c;欢迎来到猿镇&#xff0c;我是镇长&#xff0c;lee。 又到了和大家见面的时间&#xff0c;今天和大家分享一款轻松实现视差滚动效果的 JavaScript 库——Rellax.js。无需大量的配置&#xff0c;即可为你的网站增色不少。 什么是Rellax.js&am…

LabVIEW发开发电状态监测系统

LabVIEW发开发电状态监测系统 对发电设备的持续监测对于确保可靠的电力供应至消费者极为重要。它不仅能够及时提醒操作员注意发电设备的潜在损坏&#xff0c;还能减少由于设备故障造成的停机时间。为了达到这一目标&#xff0c;开发了一款基于LabVIEW的软件&#xff0c;专门用…

TypeScript基本语法

想在自己电脑上快速演示下方代码&#xff1f;点击ts官方演练场&#xff1a;https://www.typescriptlang.org/play 变量声明&#xff1a;TypeScript 在 Javascript的基础上加入了静态类型检查功能&#xff0c;因此每一个变量都有固定的数据类型。 //string: 字符串&#xff0c;…

使用Rust 构建C 组件

协议解析&#xff0c;这不就很快了&#xff0c;而且原生的标准库红黑树和avl 树支持&#xff0c;异步tokio 这些库&#xff0c;编写应用组件就很快了 rust 标准库不支持 unix 的消息队列&#xff0c;但是支持 shm 和 uds&#xff0c;后者从多方面考虑都比&#xff0c;消息队列更…

ChatGPT OpenAI API请求限制 尝试解决

1. OpenAI API请求限制 Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for gpt-3.5-turbo-16k in organization org-U7I2eKpAo6xA7RUa2Nq307ae on reques…

Hive SQL间隔连续问题

问题引入 下面是某游戏公司记录的用户每日登录数据, 计算每个用户最大的连续登录天数&#xff0c;定义连续登录时可以间隔一天。举例&#xff1a;如果一个用户在 1,3,5,6,9 登录了游戏&#xff0c;则视为连续 6 天登录。 id dt1001 2021-12-121002 2021-12-12…