《深入理解计算机系统》学习笔记 - 第四课 - 浮点数

Floating Point 浮点数

文章目录

  • Floating Point 浮点数
    • 分数二进制示例
    • 能代表的数
    • 浮点数的表示方式
      • 浮点数编码
        • 规格化值
          • 规格化值编码示例
        • 非规格化的值
        • 特殊值
    • 示例
    • IEEE 编码的一些特殊属性
    • 四舍五入,相加,相乘
      • 四舍五入
        • 四舍五入的模式
        • 二进制数的四舍五入
    • 浮点数乘积
    • 浮点数加法
    • 浮点数的一些数学性质
    • 浮点数在C中
      • 类型转换的比较
    • 《深入理解计算机系统》书籍学习笔记

浮点主要通过移动二进制小数点来表示尽可能大的取值范围,兼顾尽可能高的精度,同时还要受到位数有限的限制。

分数二进制示例

值          二进制表示       十进制
5  3/4      101.11           2^2 + 2^0 + 1/2^1 + 1/2^2 
2  7/8      10.111           2^1 + 1/2^1 + 1/2^2 + 1/2^3
1  7/16     1.0111           2^0 + 1/2^2 + 1/2^3 + 1/2^4
  • 分数除以2,就是小数点二进制右移1位。
  • 乘以2, 就是小数点左移1位
  • 数字0.111111111… 小于 1,无限接近于1
    • 1/2 + 1/4 + 1/8 + … + 1/2^i + … -> 1.0
    • 记为 1.0 - ε

能代表的数

  • 只能精确地表示x/2k形式的数字

  • 其他有理数有重复的位表示

值      二进制表达                      十进制
1/3     0.01010101010101[01]...         1/2^2 + 1/2^4 + 1/2^6 + 1/2^8 + ...
1/5     0.001100110011[0011]...         1/2^3 + 1/2^4 + 1/2^7 + 1/2^8 + ...
1/10    0.0001100110011[0011]...        1/2^4 + 1/2^5 + 1/2^8 + 1/2^9 + ...

浮点数的表示方式

同一标准:

(–1)^s*M*2^E

看着是不是像二进制科学计数法。

  • 符号位s: 决定了数是正数还是负数
  • 显著值M(mantissa,小数部分): 通常是在[1.0,2.0]范围内的分数值。
  • 指数E(exponent): 以2的幂表示值的权重

浮点数编码

在这里插入图片描述

  • s 符号位
  • exp 字段编码E(但是不等于E)
  • frac 字段编码M (但是不等于M)

不同精度:

  • 单精度:32 位(bits)
    字段所占位数: s:exp:frac -> 1:8:23

  • 双精度: 64 位(bits)
    字段所占位数: s:exp:frac -> 1:11:52

规格化值

当exp != 000…0 , 并且exp != 111…1

指数编码有一个偏置值:E = Exp - Bias
Exp : exp字段,无符号值
Bias = 2^(k-1) -1
k 表示指数的位数

  • 取值范围
    单精度:k=8, Bias = 2^(8-1) - 1 = 127 (1 <= Exp <= 254, -126 <= E <= 127)
    双精度: k=11,Bias = 2^(11-1) - 1 = 1023 (1 <= Exp <= 2046, -1022 <= E <= 1023)

  • 用隐含前导编码的有效数 1: M = 1.xxxxxx 二进制
    xxxxx: 表示frac 字段编码
    最小值:frac = 000…0(M=1.0)
    最大值:frac = 111…1(M=2.0-ε)

注意: M 是固定前面有一个1,所以最小值才是1开始。

规格化值编码示例

  • Float F = 15213.0
    15213 十进制 = 11101101101101 二进制
    = 1.1101101101101 * 2^13 科学计数法

  • 有效数
    M(小数) = 1.1101101101101 二进制
    frac(小数部分编码) = 1101101101101 0000000000 二进制

  • 指数
    E = 13
    Bias = 127
    Exp = 140 = 10001100 二进制

  • 结果
    在这里插入图片描述

非规格化的值

非规格化条件:exp = 000…0

指数值:E = 1 - Bias(注意:不是E = 0 - Bias)
以隐含前导0编码的有效数:M = 0.xxx…x

案例:

  • exp = 000…0, frac = 000…0
    代表0值
  • exp = 000…0, frac != 000…0
    最接近0.0的数字。
    平均间隔。
特殊值

特殊值条件:exp = 111…1

案例:

  • exp = 111…1, frac = 000…0
    代表无穷大。
    操作溢出。
    例如:正无穷大:1.0/0.0 = -1.0/-0.0 , 负无穷大:1.0/-0.0

  • exp = 111…1, frac != 000…0
    Not-a-Number(NaN)
    表示无法确定数值时的情况。
    例如:sqrt(-1), 无穷大*0

示例

我们用简单的8位浮点数表示法,来理解浮点数。
在这里插入图片描述

s: 1位符号位
exp: 4位指数位, 偏置位bias=2^(4-1)-1=7
frac: 3位小数位

s exp  frac E Value                 计算                                        备注
0 0000 000 -6 0                     (-1)^0 * 0 * 2^(-6)
0 0000 001 -6 1/8*1/64 = 1/512      (-1)^0 * 2^(-3) * 2^(-6)                    // 最接近0值
0 0000 010 -6 2/8*1/64 = 2/512      (-1)^0 * 2^(-2) * 2^(-6)        
…
0 0000 110 -6 6/8*1/64 = 6/512      (-1)^0 * 2^(-1)*2^(-2) * 2^(-6)  
0 0000 111 -6 7/8*1/64 = 7/512      (-1)^0 * 2^(-1)*2^(-2)* 2^(-3) * 2^(-6)     // 最大的非规格化值
0 0001 000 -6 8/8*1/64 = 8/512      (-1)^0 * 1 * 2^(-6)                             // 最小的规格化值
0 0001 001 -6 9/8*1/64 = 9/512      (-1)^0 * (1 + 2^(-3)) * 2^(-6)  
…
0 0110 110 -1 14/8*1/2 = 14/16      (-1)^0 * (1 + 2^(-1)*2^(-2)) * 2^(-1)  
0 0110 111 -1 15/8*1/2 = 15/16      (-1)^0 * (1 + 2^(-1)*2^(-2)* 2^(-3)) * 2^(-1)                // 最接近1的(小于1的数)
0 0111 000 0  8/8*1 = 1             (-1)^0 * 1 * 2^0
0 0111 001 0  9/8*1 = 9/8           (-1)^0 * (1 + 2^(-3)) * 2^0                // 最接近1的(大于1的数)
0 0111 010 0  10/8*1 = 10/8         (-1)^0 * (1 + 2^(-2)) * 2^0
…
0 1110 110 7  14/8*128 = 224        (-1)^0 * (1 + 2^(-1)*2^(-2)) * 2^7
0 1110 111 7  15/8*128 = 240        (-1)^0 * (1 + 2^(-1)*2^(-2)* 2^(-3)) * 2^7             // 最大的规格化数
0 1111 000 7  inf                   

值的计算公式:v = (–1)^s * M * 2^E
规格化数: E = Exp – Bias
非规格化数: E = 1 – Bias

IEEE 编码的一些特殊属性

  • 浮点数(FP)的0值和整型0值一样
    所有的位都是0

  • 除了非数字(NaN)之外,你可以比较任何浮点数。
    当作无符号数来比较。

四舍五入,相加,相乘

四舍五入

基本思想:

  • 先计算得到一个准确的值
  • 然后根据你期望的精度进行处理
    • 如果指数太大的化,可能会溢出
    • 可能需要四舍五入来满足小数位数(frac)
四舍五入的模式
                $1.40   $1.60   $1.50   $2.50   –$1.50
向0舍入         $1      $1      $1      $2      –$1
向下舍入        $1      $1      $1      $2      –$2
向上舍入        $2      $2      $2      $3      –$1
向偶数舍入      $1      $2      $2      $2      –$2

向0舍入:向0的方向舍去小数。
向下舍入:类似向下取整
向上舍入:类似向上取整
向偶数舍入:在四舍五入的基础上,考虑向偶数靠近,主要是在中位数时的处理方式和四舍五入不同。

二进制数的四舍五入

奇数是1,0是偶数。
二进制中间数100…,十进制中间数是500…

精度时小数后两位:

Value   Binary  Rounded     Action  Rounded     Value
2       3/32    10.000112   10.002  (<1/2—down) 2
2       3/16    10.001102   10.012  (>1/2—up)   2 1/4
2       7/8     10.111002   11.002  ( 1/2—up)   3
2       5/8     10.101002   10.102  ( 1/2—down) 2 1/2

浮点数乘积

相乘:((–1)^s1 * M1 * 2^E1) x ((–1)^s2 * M2 * 2^E2)
准确值:: (–1)^s * M * 2^E
符号位 s: s1 ^ s2
有效位 M: M1 x M2
指数位 E: E1 + E2

修正:

  • 如果 M >= 2, M 右移,增加E
  • 如果E 超出范围,溢出
  • 四舍五入 M 来符合精度要求。

浮点数加法

相加:((–1)^s1 * M1 * 2^E1) + ((–1)^s2 * M2 * 2^E2)
假设:E1 > E2

准确值:: (–1)^s * M * 2^E
符号位 s, 有效位 M: 对齐相加
指数位E: E1

修正:

  • 如果 M >= 2, 右移M, 增加E。(小数点右移)
  • 如果 M < 1, 左移 M 的 k 个位置, 减少 E 的 k。(小数点左移)
  • 如果E超出范围溢出
  • 将 M 适应小数(frac)精度

浮点数的一些数学性质

浮点数加法的数学性质:

  • 与阿贝尔群的比较
    • 加法封闭: 满足
      • 但是可能产生 无穷大和NaN
    • 结合律:满足
    • 交换律:不满足
      • 进行四舍五入时,可能溢出和不精确
      • (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
      • 每个元素都有可加逆:几乎满足
        • 除了无穷大和NaN
  • 单调性
    • a ≥ b ⇒ a+c ≥ b+c : 几乎满足
      • 除了无穷大和NaN

浮点数乘法的数学性质和加法是类似的。

浮点数在C中

无符号和有符号的转换,从未改变过位的表示(位上的实际值),只是改变了某些位的解释方式。

整数,单精度浮点数,双进度浮点数的转换,位的表示发生了变化(实际值改变了),会对位的值产生实际影响。

  • double/float -> int
    • 截取小数部分
    • 就像向0舍入
  • int -> double
    精确的转换,只要int(32) <= 53 位大小。
  • int -> float
    将会进行四舍五入操作。

类型转换的比较

三个不同类型的变量:

int x = …;
float f = …;
double d = …;

一些特性的比较:

* x == (int)(float) x           // false
• x == (int)(double) x          // true
• f == (float)(double) f        // true
• d == (double)(float) d        // false
• f == -(-f);                   // true
• 2/3 == 2/3.0                  // false. 2/3=0 整数, 2/3.0 是浮点数。
• d < 0.0 ⇒ ((d*2) < 0.0)       // true, 浮点数即使溢出也是负无穷大数
• d > f ⇒ -f > -d               //  true, 单调性
• d * d >= 0.0                  // true 
• (d+f)-d == f                  // false, 不满足结合律

《深入理解计算机系统》书籍学习笔记

《深入理解计算机系统》学习笔记 - 第一课 - 课程简介
《深入理解计算机系统》学习笔记 - 第二课 - 位,字节和整型
《深入理解计算机系统》学习笔记 - 第三课 - 位,字节和整型
《深入理解计算机系统》学习笔记 - 第四课 - 浮点数
《深入理解计算机系统》学习笔记 - 第四课 - 机器级别的程序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/214486.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-A

2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-A 目录 2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-A 需要环境或者解析可以私信 &#xff08;二&#xff09;A 模块基础设施设置/安全加固&#xff08;200 分&…

golang学习笔记——sync.Pool

文章目录 sync.Pool示例sync.Pool数据结构TCP连接池总结参考资料 sync.Pool示例 代码 sync.Pool对外提供的New、Get和Put方法。 var buffers sync.Pool{New: func() interface{} { return new(bytes.Buffer)}, }func GetBuffer() *bytes.Buffer {return buffers.Get().(*byt…

怎么查看mysql Connector/J实现的JDBC规范的版本号

打开mysql-connector-j的jar包&#xff0c;例如mysql-connector-j-8.2.0.jar&#xff0c;在Jar包的META-INF目录下面有个MANIFEST.MF文件&#xff0c;打开该文件&#xff1a; 文件内容中Specification-Version: 4.2这一项&#xff0c;就代表实现的JDBC规范的版本号&#xff0c…

忘记PDF密码了,怎么办?

PDF文件有两种密码&#xff0c;一个打开密码、一个限制编辑密码&#xff0c;因为PDF文件设置了密码&#xff0c;那么打开、编辑PDF文件就会受到限制。忘记了PDF密码该如何解密&#xff1f; PDF和office一样&#xff0c;可以对文件进行加密&#xff0c;但是没有提供恢复密码的功…

Leetcode刷题笔记题解(C++):25. K 个一组翻转链表

思路&#xff1a;利用栈的特性&#xff0c;K个节点压入栈中依次弹出组成新的链表&#xff0c;不够K个节点则保持不变 /*** struct ListNode {* int val;* struct ListNode *next;* ListNode(int x) : val(x), next(nullptr) {}* };*/ #include <stack> class Solution { …

上位机与PLC:ModbusTCP通讯之数据类型转换

前请提要: 从PLC读取的数值,不管是读正负整数还是正负浮点数,读取过来后都会变成UInt16,也就是Ushort类型 一、ushort(UInt16)转成 Int32 源代码方法: //ushort类型转Int32类型的方法private int ushortToInt32(ushort[] date, int start){//先进行判断,长度是否正确…

[VSCode] Java开发环境配置

文章目录 1 VSCode & Java 安装1.1 安装 VSCode1.2 安装 JDK 2 环境变量配置3 在 VSCode 中安装 Java 扩展4 运行测试 1 VSCode & Java 安装 1.1 安装 VSCode Visual Studio Code 官方下载 地址&#xff1a; https://code.visualstudio.com/详细安装步骤这里不做赘…

全面高压化与全面超快充,破解新能源汽车的时代难题

是什么让新能源车主感到疲惫与焦虑&#xff1f;是什么阻挡更多消费者选择新能源汽车&#xff1f;我们在身边进行一个简单的调查就会发现&#xff0c;问题的答案非常一致&#xff1a;充电。 充电难&#xff0c;充电慢的难题&#xff0c;始终是困扰新能源汽车产业发展&#xff0c…

【Flutter】vs2022上开发flutter

在vs上开发flutter&#xff0c;结果扩展仓库上没办法找到Dart&#xff0c;Flutter。 在 这 搜索Dart时也无法找到插件。 最后发现是安装工具出错了 安装了 开发需要的是

CentOS7 部署PostgreSQL

参考文档&#xff1a;https://www.postgresql.org/download/linux/redhat/ 1. 配置yum源 yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm2. 安装PostgreSQL13 yum install -y postgresql13-server3…

C++包管理利器CPM

C包管理利器CPM 一、介绍 CPM.cmake is a cross-platform CMake script that adds dependency management capabilities to CMake. It’s built as a thin wrapper around CMake’s FetchContent module that adds version control, caching, a simple API and more. CPM.cma…

minio的k8s的单机部署

minio的k8s的单机部署 apiVersion: apps/v1 kind: Deployment metadata:name: minionamespace: itshare spec:replicas: 1selector:matchLabels:app: miniotemplate:metadata:labels:app: miniospec:containers:- name: minioimage: minio/minio:RELEASE.2022-10-15T19-57-03Z…

MySQL - 表达式With as 语句的使用及练习

目录 8.1 WITH AS 的含义 8.2 WITH AS语法的基本结构如下&#xff1a; 8.3 练习题1 8.4 牛客练习题 8.1 WITH AS 的含义 WITH AS 语法是MySQL中的一种临时结果集&#xff0c;它可以在SELECT、INSERT、UPDATE或DELETE语句中使用。通过使用WITH AS语句&#xff0c;可以将一个查…

DAPP开发【10】express.js的使用

Express.js 是一种流行、轻量级的开源 Web 应用程序框架&#xff0c;用于开发基于 Node.js 的服务器端 Web 应用程序。它提供了强大的功能集&#xff0c;适用于 Web 和移动应用程序。Express.js 旨在支持单页、多页和混合式 Web 应用程序的开发。Express.js 提供了广泛的功能&a…

面试官:性能测试瓶颈调优你是真的会吗?

引言&#xff1a;性能瓶颈调优 在实际的性能测试中&#xff0c;会遇到各种各样的问题&#xff0c;比如 TPS 压不上去等&#xff0c;导致这种现象的原因有很多&#xff0c;测试人员应配合开发人员进行分析&#xff0c;尽快找出瓶颈所在。 理想的性能测试指标结果可能不是很高&…

DOS 批处理 (二)

DOS 批处理 1. 基础 DOS 命令1.1 基础命令1.2 文件系统操作1.3 文件夹管理1.4 文件管理1.5 网络相关1.6 系统管理1.7 IF、FOR和NETIFFORNET 1. 基础 DOS 命令 command /? 查找帮助DOS命令不区分命令字母的大小写 C:\Users\Administrator>echo 1 1 C:\Users\Administrator…

产品创新受赞誉,怿星荣获2023未来汽车(电子和软件)创新创业大赛一等奖

2023未来汽车&#xff08;电子和软件&#xff09;创新创业大赛 11月29日&#xff0c;上海临港&#xff0c;由中国汽车工程学会和中国&#xff08;上海&#xff09;自由贸易试验区临港新片区管理委员会联合举办的“2023未来汽车&#xff08;电子和软件&#xff09;创新创业大赛…

【QT】QComboBox和QPlainTextEdit基本介绍和应用示例

目录 1.QComboBox 1.1 QComboBox概述 1.2 QComboBox信号 1.3 QComboBox常用功能 1.4 QComboBox添加简单项 1.6 QComboBox列表项的访问 2.QPlainTextEdit 2.1 QPlainTextEdit概述 2.2 QPlainTextEdit的基本属性 2.3 QPlainTextEdit的公共函数 2.4 QPlainTextEdit的公…

DDD领域驱动设计系列-原理篇-战略设计

概述 DDD领域驱动设计是架构方法论&#xff0c;适用于业务逻辑较复杂系统。 DDD核心目的能输出领域如何划分&#xff0c;以及架构分层如何构建。 本文章系列会分2部分讲述DDD&#xff1a;1、DDD原理&#xff1b;2、DDD实践。DDD原理分为战略及战术设计2篇来讲述&#xff1b;…

Excel 动态拼接表头实现导出

public class Column {//单元格内容private String content;//字段名称&#xff0c;用户导出表格时反射调用private String fieldName;//这个单元格的集合private List<Column> listTpamscolumn new ArrayList<Column>();int totalRow;int totalCol;int row;//exc…