基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统

工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。

《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》

《基于Pytorch框架的轻量级卷积神经网络垃圾分类识别系统》

《基于轻量级卷积神经网络模型实践Fruits360果蔬识别——自主构建CNN模型、轻量化改造设计lenet、alexnet、vgg16、vgg19和mobilenet共六种CNN模型实验对比分析》

《探索轻量级模型性能上限,基于GhostNet模型开发构建多商品细粒度图像识别系统》

《基于轻量级神经网络GhostNet开发构建的200种鸟类细粒度识别分析系统》

《基于MobileNet的轻量级卷积神经网络实现玉米螟虫不同阶段识别分析》

《python开发构建轻量级卷积神经网络模型实现手写甲骨文识别系统》

首先看下实例效果:

本文使用的是GhostNet模型,GhostNet 是一种轻量级卷积神经网络,是专门为移动设备上的应用而设计的。其主要构件是 Ghost 模块,一种新颖的即插即用模块。Ghost 模块设计的初衷是使用更少的参数来生成更多特征图 (generate more features by using fewer parameters)。

官方论文地址在这里,如下所示:

官方也开源了项目,地址在这里,如下所示:

可以详细阅读官方的代码实例即可,之后可以基于自己的数据集来开发构建模型即可。

这里给出GhostNet的核心实现部分,如下所示:

class GhostNet(nn.Module):def __init__(self, cfgs, num_classes=1000, width_mult=1.0):super(GhostNet, self).__init__()self.cfgs = cfgsoutput_channel = _make_divisible(16 * width_mult, 4)layers = [nn.Sequential(nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),)]input_channel = output_channelblock = GhostBottleneckfor k, exp_size, c, use_se, s in self.cfgs:output_channel = _make_divisible(c * width_mult, 4)hidden_channel = _make_divisible(exp_size * width_mult, 4)layers.append(block(input_channel, hidden_channel, output_channel, k, s, use_se))input_channel = output_channelself.features = nn.Sequential(*layers)output_channel = _make_divisible(exp_size * width_mult, 4)self.squeeze = nn.Sequential(nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)input_channel = output_channeloutput_channel = 1280self.classifier = nn.Sequential(nn.Linear(input_channel, output_channel, bias=False),nn.BatchNorm1d(output_channel),nn.ReLU(inplace=True),nn.Dropout(0.2),nn.Linear(output_channel, num_classes),)self._initialize_weights()def forward(self, x, need_fea=False):if need_fea:features, features_fc = self.forward_features(x, need_fea)x = self.classifier(features_fc)return features, features_fc, xelse:x = self.forward_features(x)x = self.classifier(x)return xdef forward_features(self, x, need_fea=False):if need_fea:input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]for idx, layer in enumerate(self.features):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xx = self.squeeze(x)return features, x.view(x.size(0), -1)else:x = self.features(x)x = self.squeeze(x)return x.view(x.size(0), -1)def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def cam_layer(self):return self.features[-1]

简单看下数据集情况:

官方的说明指出来数据集来源于原始高分辨率光伏图像中提取,该数据集包含2624个300x300像素的8位灰度图像样本,这些图像是从44个不同的太阳能模块中提取的具有不同退化程度的功能性和有缺陷的太阳能电池。注释图像中的缺陷是固有型或非固有型的,并且已知会降低太阳能模块的功率效率。所有图像都根据大小和视角进行了标准化。此外,在提取太阳能电池之前,消除了由用于捕获EL图像的相机镜头引起的任何失真。每个图像都标注有缺陷概率(0和1之间的浮点值)和太阳能电池图像最初提取的太阳能模块类型(单晶体或多晶体)。

数据分布可视化如下所示:

训练完成后看下结果详情:
【混淆矩阵】

【loss曲线】

【acc曲线】

Batch实例可视化如下所示:
 

可视化推理实例如下所示:

感兴趣的话也都可以自己动手实践下! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215336.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python的websocket方法教程

WebSocket是一种网络通信协议,它在单个TCP连接上提供全双工的通信信道。在本篇文章中,我们将探讨如何在Python中使用WebSocket实现实时通信。 websockets是Python中最常用的网络库之一,也是websocket协议的Python实现。它不仅作为基础组件在…

NSSCTF web刷题记录7

文章目录 [SDCTF 2022]CURL Up and Read[NUSTCTF 2022 新生赛]Translate [SDCTF 2022]CURL Up and Read 考点:SSRF 打开题目发现是curl命令,提示填入url 尝试http://www.baidu.com,成功跳转 将url的字符串拿去解码,得到json格式数…

低功耗模式的通用 MCU ACM32F0X0 系列,具有高整合度、高抗干扰、 高可靠性的特点

ACM32F0X0 系列是一款支持多种低功耗模式的通用 MCU。集成 12 位 1.6 Msps 高精度 ADC 以及比 较器、运放、触控按键控制器、段式 LCD 控制器,内置高性能定时器、多路 UART、LPUART、SPI、I2C 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块&#xff0…

云降水物理基础

云降水物理基础 云的分类 相对湿度变化方程 由相对湿度的定义,两边取对数之后可以推出 联立克劳修斯-克拉佩龙方程(L和R都为常数) 由右式看出,增加相对湿度的方式:增加水汽(de增大)和降低…

基于node 安装express后端脚手架

1.首先创建文件件 2.在文件夹内打开终端 npm init 3.安装express: npm install -g express-generator注意的地方:这个时候安装特别慢,最后导致不成功 解决方法:npm config set registry http://registry.npm.taobao.org/ 4.依次执行 npm install -g ex…

【基础知识】大数据概述

关键词—分布式 化整为零,再化零为整 大数据的定义 传统数据库处理起来困难的数据集。 发展历程 中国开源生态图谱2023 参考内容 中国开源生态图谱 2023.pdf 技术组件说明 数据集成 sqoop、dataX、flume 数据存储 hdfs、kafka 数据处理 mapreduce、hive…

用PHP和HTML做登录注册操作数据库Mysql

用PHP和HTML做登录注册操作数据库Mysql 两个HTML页面&#xff0c;两个PHP,两个css,两张图片&#xff0c;源码资源在上方。 目录 HTML页面 login.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta nam…

AtCoder ABC周赛2023 11/4 (Sat) E题题解

目录 原题截图&#xff1a; 原题翻译 题目大意&#xff1a; 主要思路&#xff1a; 代码&#xff1a; 原题截图&#xff1a; 原题翻译 题目大意&#xff1a; 给你一个数组&#xff0c;给你一个公式&#xff0c;让你选k个元素&#xff0c;用公式算出最终得分。 主要思路&am…

PyQt6 表单布局Form Layout (QFormLayout)

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计43条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

嵌入式系统复习--概述

文章目录 基本概念嵌入式系统的组成结构嵌入式操作系统嵌入式软件开发环境硬件基础简介下一篇 基本概念 嵌入式计算机&#xff1a;把嵌入到对象体系中、实现对象体系智能化控制的带有微控制器的计算机&#xff0c;称作嵌入式计算机 嵌入式系统&#xff1a;以应用为中心&#…

STM32-01-认识单片机

文章目录 一、单片机简介二、Cortex-M系列介绍三、初识STM32四、STM32原理图设计五、搭建开发环境六、STM32初体验七、MDK5使用技巧 一、单片机简介 单片机是什么&#xff1f; 单片机&#xff1a;Single-Chip Microcomputer&#xff0c;单片微型计算机&#xff0c;是一种集成电…

【mysql】下一行减去上一行数据、自增序列场景应用

背景 想获取if_yc为1连续账期数据 思路 获取所有if_yc为1的账期数据下一行减去上一行账期&#xff0c;如果为1则为连续&#xff0c;不等于1就为断档获取不等于1的最小账期&#xff0c;就是离当前账期最近连续账期 代码 以下为mysql语法&#xff1a; select acct_month f…

基于 librosa和soundfile对音频进行重采样 (VITS 必备)

基于 librosa和soundfile对音频进行重采样 一、前言 在玩bert-vits2的时候有对音频进行重采样的需求&#xff0c;故写了一下批量对音频进行重采样的脚本。 优化点&#xff1a; 根据机器自适应线程数为最多&#xff0c;保证充分利用机器资源&#xff0c;提高速度>30%。支持…

Caching the Application Engine Server 缓存应用程序引擎服务器

Caching the Application Engine Server 缓存应用程序引擎服务器 Application Engine caches metadata just like the application server. This caching enhances performance because a program can refer to the local cache for any objects that it uses. 应用程序引擎…

iPaaS架构深入探讨

在数字化时代全面来临之际&#xff0c;企业正面临着前所未有的挑战与机遇。技术的迅猛发展与数字化转型正在彻底颠覆各行各业的格局&#xff0c;不断推动着企业迈向新的前程。然而&#xff0c;这一数字化时代亦衍生出一系列复杂而深奥的难题&#xff1a;各异系统之间数据孤岛、…

C语言猜数字升级版

题目概述 猜数字是一种益智游戏&#xff0c;既可以两个人一起玩&#xff0c;也可以与电脑一起玩。现在我们需要将这个游戏移到电脑上&#xff0c;让电脑与我们一起玩猜数字游戏. 需求分析 用户输入&#xff1a;确定用户输入的数据是否正确游戏过程&#xff1a;保证计算机能正…

Redis HyperLogLog 数据结构模型统计

HyperLogLog HyperLogLog 不是一种新的数据结构 &#xff0c; 本质上是字符串类型。 是一种基数算法。 通过 HyperLogLog 可以节省内存空间&#xff0c;并完成独立总数的统计。 HyperLogLog 数据结构可用于仅使用少量恒定内存来计算集合中的唯一元素&#xff0c;具体而言&…

Linux高级管理-基于域名的虚拟Web主机搭建

客服机限制地址 通过 Require 配置项&#xff0c;可以根据主机的主机名或P地址来决定是否允许客户端访问。在httpd服 务器的主配置文件的<Location>&#xff0c;<Directory>、<Files>、<Limit>配置段中均可以使用Require 配置 项来控制客户端的访问。使…

Linux——web网站服务(一)

一、安装httpd服务器Apache网站服务 1、准备工作 为了避免发送端口冲突&#xff0c;程序冲突等现象&#xff0c;卸载使用rpm方式安装的httpd #使用命令检查是否下载了httpd [rootserver ~]# rpm -qa httpd #如果有则使用 [rootserver ~]# rpm -e httpd --nodeps Apache的配置…

c语言插入排序及希尔排序详解

目录 前言&#xff1a; 插入排序&#xff1a; 希尔排序&#xff1a; 前言&#xff1a; 排序在我们生活中无处不在&#xff0c;比如学生成就排名&#xff0c;商品价格排名等等&#xff0c;所以排序在数据结构的学习中尤为重要&#xff0c;今天就为大家介绍两个经典的排序算法&…