数学建模-二氧化碳排放及时空分布测度

二氧化碳排放及时空分布测度

整体求解过程概述(摘要)

  面临全球气候变化的巨大挑战,我国积极响应《巴黎协定》的号召,提出“2030年前碳达峰,2060 年前实现碳中和”的碳排放发展目标,并将碳中和相关工作作为 2021 年的重点任务之一。目前我国主流的碳排放核算方法是基于产品、企业和项目的自下而上的方法,成本较大且效率较低,而且县级统计数据严重缺失,难以进行精细化的管理和政策指导。
  夜光灯数据被广泛应用在社会经济指标的测度中,并表现出良好的解释能力。本文结合夜光灯和社会经济数据,利用提升回归树(BRT)建立其与碳排放的关系,并采用贝叶斯法优化(BO)模型超参数。本文利用 2000-2017 年中国省级数据,进行有监督学习,并通过 K 折交叉验证法对模型的表现结果进行评价,结果表明BO-BRT 具有较高的拟合优度和泛化能力。
  基于 BO-BRT 模型,我们对 2000-2017 年中国县级碳排放数据进行测度,并结合标准差椭圆对中国碳排放空间分布进行分析,结果发现碳排放主轴逐渐向西旋转,表明中国发展过程内蒙古、新疆等西部地区碳排放量逐渐增加。
  本文结合夜光灯和社会经济数据建立的我国县域碳排放量的估计模型提供了一种成本低、精度高的小尺度碳排放核算方法,对我国县域碳排放测度、碳减排措施的落实乃至其经济发展都有着重要指导意义,同时针对中国全域碳排放分析的结果,对国家加强顶层设计、统筹协调各个地区碳排放具有重大实践意义。

问题分析

  在国内产业向低碳转型的过程中,宏观政府部门如何制定减排措施以及微观企业如何执行落实、我国区域经济结构如何协同发展都是各部门在未来计划里值得深入探讨的问题,而科学客观的碳排放数据则是政策实践强有力的理论支撑。科学测度碳排放,不仅可以对人类文明产业发展起到警示告诫作用,还能刺激各行业对于绿色和新清洁能源的技术创新与研究使用,推动促进中国作为世界第二大经济体进行绿色转型的模范作用,提早达到“碳高峰”对于人类社会发展与生态平衡二者之间的交锋也具有积极的示范意义。
  在此上述背景之下,寻找一种低成本又高精度的二氧化碳排放强度测算方法对于研究我国高速增长的经济和二氧化碳排放量之间的关系显得尤为重要。本文通过收集国家统计局数据库中 2000-2017 年各省的年度 GDP、人均 GDP、人口总数、城镇化率等面板数据以及中国碳核算数据库中估算的 1997 - 2017 年中国2735 个县域的 CO2 排放量数据结合,并且从经过统一后的 DMSP/OLS 和 NPP/VIIRS卫星图像中得到了具有高质量并且时间跨度范围广度的稳定夜间灯光数据,并据此建立中国小地域尺度下的二氧化碳排放量核算模型,提出相应规划与建议。本文提出的结果有助于弥补现有的数据差距,并有助于制定减少中国二氧化碳排放的战略。除了应用在碳排放领域具有借鉴价值,而且对于今后人口分布、GDP 预测和污染物估计等社会指标测度也提供着重要的参考意义。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

(代码和文档not free)

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
import itertools
from sklearn.metrics import r2_score as rs
import warningswarnings.filterwarnings("ignore")#忽略输出警告
plt.rcParams["font.sans-serif"]=["SimHei"]#用来正常显示中文标签
plt.rcParams["axes.unicode_minus"]=False#用来显示负号df=pd.read_excel("E:\or.xlsx"#指定Month列作为索引列#天然气CO2排放量
NGE=df1["Natural Gas Electric Power Sector CO2 Emissions"]
NGE.head()
#折线图
fig, ax=plt.subplots(figsize=(15,15))
NGE.plot(ax=ax,fontsize=15)
ax.set_title("天然气碳排放",fontsize=25)
ax.set_xlabel("时间(月)",fontsize=25)
ax.set_ylabel("碳排放量(百万总吨)",fontsize=25)
ax.legend(loc="best",fontsize=15)
ax.grid()
#分解时序
#STL(Seasonal and Trend decomposition using Loess)是一个非常通用和稳健强硬的分解时间序列的方法
import statsmodels.api as sm
#decompostion=tsa.STL(NGE).fit()报错,这里前面加上索引sm
decompostion=sm.tsa.STL(NGE).fit()#statsmodels.tsa.api:时间序列模型和方法
decompostion.plot()
#趋势效益
trend=decompostion.trend
#季节效应
seasonal=decompostion.seasonal
#随机效应
residual=decompostion.resid
#平稳性检验
#自定义函数用于ADF检查平稳性
from statsmodels.tsa.stattools import adfuller as ADF
def test_stationarity(timeseries,alpha):#alpha为检验选取的显著性水平adf=ADF(timeseries)p=adf[1]#p值critical_value=adf[4]["5%"]#在95%置信区间下的临界的ADF检验值test_statistic=adf[0]#ADF统计量if p<alpha and test_statistic<critical_value:print("ADF平稳性检验结果:在显著性水平%s下,数据经检验平稳"%alpha)return Trueelse:print("ADF平稳性检验结果:在显著性水平%s下,数据经检验不平稳"%alpha)return False
#将数据化为平稳数据
#一阶差分
NGE_diff1=NGE.diff(1)
#十二步差分
NGE_seasonal=NGE_diff1.diff(12)#非平稳序列经过d阶常差分和D阶季节差分变为平稳时间序列
print(NGE_seasonal)
#十二步季节差分平稳性检验结果
test_stationarity(NGE_seasonal.dropna(),1e-3)#使用dropna()去除NaN值
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/216374.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用python打印出菱形图案

你可以使用Python编写一个简单的函数来打印菱形图案。下面是一个例子&#xff0c;这个函数接受一个参数n&#xff0c;表示菱形的高度&#xff0c;然后打印出一个菱形图案&#xff1a; def print_diamond(n): # 上半部分 for i in range(n): print(" " …

螺旋矩阵算法(leetcode第54题)

题目描述&#xff1a; 给你一个 m 行 n 列的矩阵 matrix &#xff0c;请按照 顺时针螺旋顺序 &#xff0c;返回矩阵中的所有元素。示例 1&#xff1a;输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;[1,2,3,6,9,8,7,4,5]示例 2&#xff1a;输入&#xff…

制作Windows 11的U盘启动工具的两种方法,以及如何使用它来安装

本文介绍了如何创建Windows 11的U盘启动工具,以及如何使用它来安装Windows 11。 Windows 11 Media Creation Tool 微软网站上提供的Windows 11 Media Creation Tool可以帮助你创建Windows 11的U盘启动工具。它真的很容易使用,因为它可以引导你完成所有的步骤。 1、访问Mic…

【每日一题】【面试经典150 | 动态规划】爬楼梯

Tag 【动态规划】【数组】 题目来源 70. 爬楼梯 题目解读 有过刷题「动态规划」刷题经验的读者都知道&#xff0c;爬楼梯问题是一种最典型也是最简单的动态规划问题了。 题目描述为&#xff1a;你每次可以爬 1 或者 2 个台阶&#xff0c;问爬上 n 阶有多少种方式。 解题思路…

数据库——安全性

智能2112杨阳 一、目的与要求&#xff1a; 1、设计用户子模式 2、根据实际需要创建用户角色及用户&#xff0c;并授权 3、针对不同级别的用户定义不同的视图&#xff0c;以保证系统的安全性 二、内容&#xff1a; 先创建四类用户角色&#xff1a; 管理员角色Cusm、客户角…

CF1898C Colorful Grid(构造)

题目链接 题目大意 n 行 m 列 的一个矩阵&#xff0c;每行有m - 1条边&#xff0c;每列有 n - 1 条边。 问一共走 k 条边&#xff0c;能不能从 &#xff08;1&#xff0c; 1&#xff09;&#xff0c;走到&#xff08;n&#xff0c; m&#xff09;&#xff0c;要求该路径上&am…

如何正确选择打造自己的私域流量知识付费平台,我有才知识付费saas平台告诉你!

在当今数字化时代&#xff0c;私域流量知识付费平台已经成为企业和个人获取收益、扩大影响力的重要渠道。但是&#xff0c;如何正确选择并打造一个属于自己的私域流量知识付费平台呢&#xff1f;我有才知识付费saas平台为你提供一站式解决方案&#xff01; 一、功能全面&#…

Tomcat主配置文件(server.xml)详解

前言 Tomcat主配置文件&#xff08;server.xml&#xff09;是Tomcat服务器的主要配置文件&#xff0c;文件位置在conf目录下&#xff0c;它包含了Tomcat的全局配置信息&#xff0c;包括监听端口、虚拟主机、安全配置、连接器等。 目录 1 server.xml组件类别 2 组件介绍 3 se…

值类型相关函数与对象类型相关函数内存调用过程

值类型相关函数内存调用&#xff1a; 先来看这样一段代码&#xff0c;你认为它的运行结果是多少呢&#xff1f; 20和11还是20和10&#xff1f; package org.example;public class Main {public static void main(String[] args) {int a10;add(a);System.out.println(a);}pub…

在IDEA中创建Maven项目时没有src文件、不自动配置文件

错误示例&#xff1a; 没有src文件&#xff0c;并且没有自动下载相关的配置文件 对我这中情况无效的解决办法&#xff1a; ①配置好下列图中圈出来的文件 ②在VM选项中输入&#xff1a;“-DarchetypeInternal” ③点击应用&#xff0c;再点击确定 ④还是不行 解决办法&#x…

【八】python装饰器模式

文章目录 8.1 装饰器模式简介8.2 装饰器模式作用8.3 装饰器模式构成8.3.1 装饰器模式包含以下几个核心角色&#xff1a;8.3.2 UML类图 8.4 装饰器模式python代码实现8.4.1 基本装饰器的使用8.4.2 多个装饰器的执行顺序8.4.3 带返回值的装饰器的使用8.4.4 装饰器模式-关联类模式…

MySQL 8 update语句更新数据表里边的数据

数据重新补充 这里使用alter table Bookbought.bookuser add userage INT after userphone;为用户表bookuser在userphone列后边添加一个类型为INT的新列userage。 使用alter table Bookbought.bookuser add sex varchar(6) after userage ;为用户表bookuser在userage 列后边添…

低代码与MES:智能制造的新篇章

一、引言 随着工业4.0和智能制造的兴起&#xff0c;企业对于生产过程的数字化、智能化需求日益迫切。制造执行系统&#xff08;MES&#xff09;作为连接计划层与控制层的关键信息系统&#xff0c;在提升生产效率、优化资源配置、保障产品质量等方面发挥着重要作用。然而&#…

Nginx缓存及HTTPS配置小记

缓存基础 缓存分类 某些场景下&#xff0c;Nginx需要通过worker到上有服务中获取数据并将结果响应给客户端&#xff0c;在高并发场景下&#xff0c;我们完全可以将这些数据视为热点数据&#xff0c;并将其缓存到Nginx服务上。 客户端缓存&#xff1a;将缓存数据放到客户端。 …

uniapp实现地图电子围栏功能

该功能使用uniapp中内置组件map实现 效果图预览&#xff1a; 实现过程&#xff1a; 1.文档&#xff1a; 2.代码&#xff1a; <template><view><map :style"width: 100%; height:screenHeight" :latitude"latitude" :longitude"longit…

软件压力测试的重要性与用途

在当今数字化的时代&#xff0c;软件已经成为几乎所有行业不可或缺的一部分。随着软件应用规模的增加和用户数量的上升&#xff0c;软件的性能变得尤为关键。为了确保软件在面对高并发和大负载时仍然能够保持稳定性和可靠性&#xff0c;软件压力测试变得至关重要。下面是软件压…

smartKettle离线部署及问题记录

目录 &#x1f4da;第一章 前言&#x1f4d7;背景&#x1f4d7;目的&#x1f4d7;总体方向 &#x1f4da;第二章 部署&#x1f4d7;源码下载&#x1f4d7;后端部署&#x1f4d5;导入后端项目&#x1f4d5;修改settings.xml(自动下载相关jar包)&#x1f4d5; 编译&#x1f4d5; …

ky10 x86 一键安装wvp gb28181 pro平台

下载代码 git clone https://gitcode.net/zengliguang/ky10_x86_wvp_record_offline_install.gitfinalshell mobaxterm 修改服务器ip 查看服务器ip ip a 在脚本文件中修改服务器ip 执行安装脚本 切换到root用户 sudo su cd ky10_x86_wvp_record_of

3分钟,掌握“曲面屏显示屏”

在3分钟内掌握“曲面屏显示屏”的概念和特点&#xff0c;可以按照以下步骤进行&#xff1a; 一、了解曲面屏显示屏的基本概念 曲面屏显示屏是一种采用柔性塑料的显示屏&#xff0c;主要通过OLED面板来实现。相比直面屏幕&#xff0c;曲面屏幕弹性更好&#xff0c;不易破碎。此外…

Burpsuite插件-Brida

本文作者&#xff1a;杉木涂鸦智能安全实验室 通过一道CTF题目来认识一下Frida objection 前面两篇通过对Frida的了解&#xff0c;以及利用objection来分析&#xff0c;这篇来了解一下分析后实际利用&#xff0c;以及通过实现插件自动化的方式来利用。 Brida介绍 https://gi…