​multiprocessing.shared_memory --- 可跨进程直接访问的共享内存​

源代码: Lib/multiprocessing/shared_memory.py

3.8 新版功能.


该模块提供了一个 SharedMemory 类,用于分配和管理多核或对称多处理器(SMP)机器上进程间的共享内存。为了协助管理不同进程间的共享内存生命周期,multiprocessing.managers 模块也提供了一个 BaseManager 的子类: SharedMemoryManager

本模块中,共享内存是指 "System V 类型" 的共享内存块(虽然可能和它实现方式不完全一致)而不是 “分布式共享内存”。这种类型的的共享内存允许不同进程读写一片公共(或者共享)的易失性存储区域。一般来说,进程被限制只能访问属于自己进程空间的内存,但是共享内存允许跨进程共享数据,从而避免通过进程间发送消息的形式传递数据。相比通过磁盘、套接字或者其他要求序列化、反序列化和复制数据的共享形式,直接通过内存共享数据拥有更出色性能。

class multiprocessing.shared_memory.SharedMemory(name=Nonecreate=Falsesize=0)

创建一个新的共享内存块或者连接到一片已经存在的共享内存块。每个共享内存块都被指定了一个全局唯一的名称。通过这种方式,进程可以使用一个特定的名字创建共享内存区块,然后其他进程使用同样的名字连接到这个共享内存块。

作为一种跨进程共享数据的方式,共享内存块的寿命可能超过创建它的原始进程。一个共享内存块可能同时被多个进程使用,当一个进程不再需要访问这个共享内存块的时候,应该调用 close() 方法。当一个共享内存块不被任何进程使用的时候,应该调用 unlink() 方法以执行必要的清理。

name 是共享内存的唯一名称,字符串类型。如果创建一个新共享内存块的时候,名称指定为 None (默认值),将会随机产生一个新名称。

create 指定创建一个新的共享内存块 (True) 还是连接到已存在的共享内存块 (False) 。

如果是新创建共享内存块则 size 用于指定块的大小为多少字节。由于某些平台是以内存页大小为最小单位来分配内存的,最终得到的内存块大小可能大于或等于要求的大小。如果是连接到已经存在的共享内存块, size 参数会被忽略。

close()

关闭实例对于共享内存的访问连接。所有实例确认自己不再需要使用共享内存的时候都应该调用 close() ,以保证必要的资源清理。调用 close() 并不会销毁共享内存区域。

unlink()

请求销毁底层的共享内存块。 为了执行必要的资源清理,在所有使用这个共享内存块的进程中,unlink() 应该调用一次(且只能调用一次)。 发出此销毁请求后,共享内存块可能会、也可能不会立即销毁,且此行为在不同操作系统之间可能不同。 调用 unlink() 后再尝试访问其中的数据可能导致内存错误。 注意:最后一个关闭共享内存访问权限的进程可以以任意顺序调用 unlink() 和 close()。

buf

共享内存块内容的 memoryview 。

name

共享内存块的唯一标识,只读属性。

size

共享内存块的字节大小,只读属性。

以下示例展示了 SharedMemory 底层的用法:

>>>

>>> from multiprocessing import shared_memory
>>> shm_a = shared_memory.SharedMemory(create=True, size=10)
>>> type(shm_a.buf)
<class 'memoryview'>
>>> buffer = shm_a.buf
>>> len(buffer)
10
>>> buffer[:4] = bytearray([22, 33, 44, 55])  # Modify multiple at once
>>> buffer[4] = 100                           # Modify single byte at a time
>>> # Attach to an existing shared memory block
>>> shm_b = shared_memory.SharedMemory(shm_a.name)
>>> import array
>>> array.array('b', shm_b.buf[:5])  # Copy the data into a new array.array
array('b', [22, 33, 44, 55, 100])
>>> shm_b.buf[:5] = b'howdy'  # Modify via shm_b using bytes
>>> bytes(shm_a.buf[:5])      # Access via shm_a
b'howdy'
>>> shm_b.close()   # Close each SharedMemory instance
>>> shm_a.close()
>>> shm_a.unlink()  # Call unlink only once to release the shared memory

下面的例子展示了 SharedMemory 类结合 NumPy 数组 的实际应用,从两个独立的 Python shell 访问同一个 numpy.ndarray:

>>>

>>> # In the first Python interactive shell
>>> import numpy as np
>>> a = np.array([1, 1, 2, 3, 5, 8])  # Start with an existing NumPy array
>>> from multiprocessing import shared_memory
>>> shm = shared_memory.SharedMemory(create=True, size=a.nbytes)
>>> # Now create a NumPy array backed by shared memory
>>> b = np.ndarray(a.shape, dtype=a.dtype, buffer=shm.buf)
>>> b[:] = a[:]  # Copy the original data into shared memory
>>> b
array([1, 1, 2, 3, 5, 8])
>>> type(b)
<class 'numpy.ndarray'>
>>> type(a)
<class 'numpy.ndarray'>
>>> shm.name  # We did not specify a name so one was chosen for us
'psm_21467_46075'>>> # In either the same shell or a new Python shell on the same machine
>>> import numpy as np
>>> from multiprocessing import shared_memory
>>> # Attach to the existing shared memory block
>>> existing_shm = shared_memory.SharedMemory(name='psm_21467_46075')
>>> # Note that a.shape is (6,) and a.dtype is np.int64 in this example
>>> c = np.ndarray((6,), dtype=np.int64, buffer=existing_shm.buf)
>>> c
array([1, 1, 2, 3, 5, 8])
>>> c[-1] = 888
>>> c
array([  1,   1,   2,   3,   5, 888])>>> # Back in the first Python interactive shell, b reflects this change
>>> b
array([  1,   1,   2,   3,   5, 888])>>> # Clean up from within the second Python shell
>>> del c  # Unnecessary; merely emphasizing the array is no longer used
>>> existing_shm.close()>>> # Clean up from within the first Python shell
>>> del b  # Unnecessary; merely emphasizing the array is no longer used
>>> shm.close()
>>> shm.unlink()  # Free and release the shared memory block at the very end

class multiprocessing.managers.SharedMemoryManager([address[, authkey]])

BaseManager 的子类,可用于管理跨进程的共享内存块。

调用 SharedMemoryManager 实例上的 start() 方法会启动一个新进程。这个新进程的唯一目的就是管理所有由它创建的共享内存块的生命周期。想要释放此进程管理的所有共享内存块,可以调用实例的 shutdown() 方法。这会触发执行它管理的所有 SharedMemory 对象的 SharedMemory.unlink() 方法,然后停止这个进程。通过 SharedMemoryManager 创建 SharedMemory 实例,我们可以避免手动跟踪和释放共享内存资源。

这个类提供了创建和返回 SharedMemory 实例的方法,以及以共享内存为基础创建一个列表类对象 (ShareableList) 的方法。

有关继承的可选输入参数 address 和 authkey 以及他们如何用于从进程连接已经存在的 SharedMemoryManager 服务,参见 multiprocessing.managers.BaseManager 。

SharedMemory(size)

使用 size 参数,创建一个新的指定字节大小的 SharedMemory 对象并返回。

ShareableList(sequence)

创建并返回一个新的 ShareableList 对象,通过输入参数 sequence 初始化。

下面的案例展示了 SharedMemoryManager 的基本机制:

>>>

>>> from multiprocessing.managers import SharedMemoryManager
>>> smm = SharedMemoryManager()
>>> smm.start()  # Start the process that manages the shared memory blocks
>>> sl = smm.ShareableList(range(4))
>>> sl
ShareableList([0, 1, 2, 3], name='psm_6572_7512')
>>> raw_shm = smm.SharedMemory(size=128)
>>> another_sl = smm.ShareableList('alpha')
>>> another_sl
ShareableList(['a', 'l', 'p', 'h', 'a'], name='psm_6572_12221')
>>> smm.shutdown()  # Calls unlink() on sl, raw_shm, and another_sl

以下案例展示了 SharedMemoryManager 对象的一种可能更方便的使用方式,通过 with 语句来保证所有共享内存块在使用完后被释放。

>>>

>>> with SharedMemoryManager() as smm:
...     sl = smm.ShareableList(range(2000))
...     # Divide the work among two processes, storing partial results in sl
...     p1 = Process(target=do_work, args=(sl, 0, 1000))
...     p2 = Process(target=do_work, args=(sl, 1000, 2000))
...     p1.start()
...     p2.start()  # A multiprocessing.Pool might be more efficient
...     p1.join()
...     p2.join()   # Wait for all work to complete in both processes
...     total_result = sum(sl)  # Consolidate the partial results now in sl

在 with 语句中使用 SharedMemoryManager  对象的时候,使用这个管理器创建的共享内存块会在 with 语句代码块结束后被释放。

class multiprocessing.shared_memory.ShareableList(sequence=None\*name=None)

提供了一个类似于可变列表的对象,其中存储的所有值都存储在一个共享内存块中。 这限制了可存储的值只能是 int (带符号的 64 位), floatboolstr (当以 utf-8 编码时每个值小于 10M 字节), bytes (每个值小于 10M 字节) 和 None 内置数据类型。 它与 list 内置类型的另一个显著区别在于这些列表不能改变其总长度 (例如不能追加、插入等),也不支持通过切片动态创建新的 ShareableList 实例。

sequence 会被用来为一个新的 ShareableList 填充值。 设为 None 则会基于唯一的共享内存名称关联到已经存在的 ShareableList

name 是所请求的共享内存的唯一名称,与 SharedMemory 的定义中所描述的一致。 当关联到现有的 ShareableList 时,则指明其共享内存块的唯一名称并将 sequence 设为 None

备注

bytes 和 str 值存在一个已知问题。 如果这些值以 \x00 空字节或字符结尾,那么在按索引从 ShareableList 抓取这些值时它们可能会被 静默地截去。 这种 .rstrip(b'\x00') 行为被认为是一个错误并可能在未来消失。 参见 gh-106939。

对于某些应用来说在右侧截去尾部空值会造成问题,要绕过此问题可以在存储这样的值时总是无条件地在其末尾附加一个额外的非 0 字节并在获取时无条件地移除它:

>>>

>>> from multiprocessing import shared_memory
>>> nul_bug_demo = shared_memory.ShareableList(['?\x00', b'\x03\x02\x01\x00\x00\x00'])
>>> nul_bug_demo[0]
'?'
>>> nul_bug_demo[1]
b'\x03\x02\x01'
>>> nul_bug_demo.shm.unlink()
>>> padded = shared_memory.ShareableList(['?\x00\x07', b'\x03\x02\x01\x00\x00\x00\x07'])
>>> padded[0][:-1]
'?\x00'
>>> padded[1][:-1]
b'\x03\x02\x01\x00\x00\x00'
>>> padded.shm.unlink()

count(value)

返回 value 出现的次数。

index(value)

返回 value 首次出现的位置,如果 value 不存在, 则抛出 ValueError 异常。

format

包含由所有当前存储值所使用的 struct 打包格式的只读属性。

shm

存储了值的 SharedMemory 实例。

下面的例子演示了 ShareableList 实例的基本用法:

>>>

>>> from multiprocessing import shared_memory
>>> a = shared_memory.ShareableList(['howdy', b'HoWdY', -273.154, 100, None, True, 42])
>>> [ type(entry) for entry in a ]
[<class 'str'>, <class 'bytes'>, <class 'float'>, <class 'int'>, <class 'NoneType'>, <class 'bool'>, <class 'int'>]
>>> a[2]
-273.154
>>> a[2] = -78.5
>>> a[2]
-78.5
>>> a[2] = 'dry ice'  # Changing data types is supported as well
>>> a[2]
'dry ice'
>>> a[2] = 'larger than previously allocated storage space'
Traceback (most recent call last):...
ValueError: exceeds available storage for existing str
>>> a[2]
'dry ice'
>>> len(a)
7
>>> a.index(42)
6
>>> a.count(b'howdy')
0
>>> a.count(b'HoWdY')
1
>>> a.shm.close()
>>> a.shm.unlink()
>>> del a  # Use of a ShareableList after call to unlink() is unsupported

下面的例子演示了一个、两个或多个进程如何通过提供下层的共享内存块名称来访问同一个 ShareableList:

>>>

>>> b = shared_memory.ShareableList(range(5))         # In a first process
>>> c = shared_memory.ShareableList(name=b.shm.name)  # In a second process
>>> c
ShareableList([0, 1, 2, 3, 4], name='...')
>>> c[-1] = -999
>>> b[-1]
-999
>>> b.shm.close()
>>> c.shm.close()
>>> c.shm.unlink()

下面的例子显示 ShareableList (以及下层的 SharedMemory) 对象可以在必要时被封存和解封。 请注意,它将仍然为同一个共享对象。 出现这种情况是因为被反序列化的对象具有相同的唯一名称并使用这个相同的名称附加到现有的对象上(如果对象仍然保持存活):

>>>

>>> import pickle
>>> from multiprocessing import shared_memory
>>> sl = shared_memory.ShareableList(range(10))
>>> list(sl)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>>

>>> deserialized_sl = pickle.loads(pickle.dumps(sl))
>>> list(deserialized_sl)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>>

>>> sl[0] = -1
>>> deserialized_sl[1] = -2
>>> list(sl)
[-1, -2, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(deserialized_sl)
[-1, -2, 2, 3, 4, 5, 6, 7, 8, 9]

>>>

>>> sl.shm.close()
>>> sl.shm.unlink()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/216418.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最近面试了一位5年的测试,一问三不知,还反怼我...

最近看了很多简历&#xff0c;很多候选人年限不小&#xff0c;但是做的都是一些非常传统的项目&#xff0c;想着也不能通过简历就直接否定一个人&#xff0c;何况现在大环境越来 越难&#xff0c;大家找工作也不容易&#xff0c;于是就打算见一见。 在沟通中发现&#xff0c;由…

Linux高级管理--安装MySQL数据库系统

MySQL服务基础 MySQL.是一个真正的多线程、多用户的SQL数据库服务&#xff0c;凭借其高性能、高可靠和易于使 用的特性&#xff0c;成为服务器领域中最受欢迎的开源数据库系统。在2008年以前&#xff0c;MySOL项目由MySQL AB公司进行开发&#xff0c;发布和支持&#xff0c;之后…

产品表结构分析

一个项目之中&#xff0c;会有很多数据&#xff0c;众多数据之间也存在这各种关系&#xff0c;如何依据这些关系设计出更符合实际且适合的表及之间的关联关系也是我们所必须学习的 一、常见部门表结构分析 几乎所有框架里面都有一张部门表&#xff0c;我们先来看一下他的结构&…

逆向思考 C. Fence Painting

Problem - 1481C - Codeforces 思路&#xff1a;逆序考虑&#xff0c;因为每一块木板都是被最后一次粉刷所决定的。 从后往前开始&#xff0c;对于 c i c_i ci​来说&#xff0c; 如果这个颜色还有没有涂的木板&#xff0c;那么涂到其中一个木板即可如果这个颜色下没有未涂的…

使用selenium的edge浏览器登录某为

互联网上基本都是某哥的用法&#xff0c;其实edge和某哥的用法是一样的就有一下参数不一样。 一、运行环境 Python&#xff1a;3.7 Selenium&#xff1a;4.11.2 Edge&#xff1a;版本 120.0.2210.61 (正式版本) (64 位) 二、执行代码 from time import sleepfrom selenium…

GB28181学习(十八)——图像抓拍

前言 本文主要介绍图像抓拍功能&#xff0c;通过自研的sip库&#xff08;mysipsdk.dll&#xff09;对接真实设备&#xff0c;使用http方式实现图像数据传输&#xff0c;最终达到图像抓拍与保存的目的。 基本要求 图像格式宜使用JPEG&#xff1b;图像分辨率宜采用与主码流相同…

【JMeter】使用nmon进行性能资源监控

一、前言 ​ 在工作中可能会遇到需要在压测的时候对Linux服务器进行性能资源监控的情况。这时可以用nmon来对服务器进行监控。 二、nmon的下载安装 1.查看系统信息 shell cat /etc/os-release结果为 shell PRETTY_NAME"Debian GNU/Linux 12 (bookworm)" NAME&qu…

动物姿态估计:微调 YOLOv8 姿态模型

动物姿态估计是计算机视觉的一个研究领域&#xff0c;是人工智能的一个子领域&#xff0c;专注于自动检测和分析图像或视频片段中动物的姿势和位置。目标是确定一种或多种动物的身体部位&#xff08;例如头部、四肢和尾巴&#xff09;的空间排列。这项技术具有广泛的应用&#…

【大数据】Hadoop生态未来发展的一些看法

大数据的起源 谷歌在2003到2006年间发表了三篇论文&#xff0c;《MapReduce: Simplified Data Processing on Large Clusters》&#xff0c;《Bigtable: A Distributed Storage System for Structured Data》和《The Google File System》介绍了Google如何对大规模数据进行存储…

MATLAB基础运算

矩阵和数字相乘 就是矩阵里面每个元素跟这个数字乘一遍&#xff0c;无论是点乘还是叉乘&#xff0c;对于这个都一样。 >> Aones(3) A 1 1 11 1 11 1 1 >> 10*A ans 10 10 1010 10 1010 10 10 矩阵和矩阵叉乘 能不能相…

什么是接口测试?如何做接口测试

接口测试是指对系统或应用程序接口进行测试&#xff0c;以验证接口的功能、可靠性、性能、安全性等方面的需求是否被满足。接口测试可以用于测试不同系统、模块、组件之间的交互和通信&#xff0c;包括 Web 接口、网络接口、数据库接口等。其重点是测试数据传输、数据格式、数据…

excel做预测的方法集合

一. LINEST函数 首先&#xff0c;一元线性回归的方程&#xff1a; y a bx 相应的&#xff0c;多元线性回归方程式&#xff1a; y a b1x1 b2x2 … bnxn 这里&#xff1a; y - 因变量即预测值x - 自变量a - 截距b - 斜率 LINEST的可以返回回归方程的 截距(a) 和 斜…

MySQL基础笔记

MySQL 1. SQL1.1 SQL-DDL语句1.1.1 数据库操作1.1.2 表操作 1.2 MySQL-DML语句1.3 MySQL-DQL语句1.3.1 基本查询1.3.2 条件查询1.3.3 聚合函数1.3.4 分组查询1.3.5 排序查询1.3.6 分页查询 1.4 MySQL-DCL语句1.4.1 管理用户1.4.2 权限控制 2. 函数2.1 字符串函数2.2 数值函数2.…

mybatis动态SQL-choose-when-otherwise

1、建库建表 create database mybatis-example; use mybatis-example; create table emp (empNo varchar(40),empName varchar(100),sal int,deptno varchar(10) ); insert into emp values(e001,张三,8000,d001); insert into emp values(e002,李四,9000,d001); insert into…

性能测试、负载测试、压力测试之间的差异!

1、什么是性能测试 性能测试是一种用于确定计算机、网络或设备速度的测试。它通过在不同的负载场景中传递不同的参数来检查系统组件的性能。 2、什么是负载测试 负载测试是在任何应用程序或网站上模拟实际用户负载的过程。它检查应用程序在正常和高负载期间的行为。当开发项目…

Gin之GORM 操作数据库(MySQL)

GORM 简单介绍 GORM 是 Golang 的一个 orm 框架。简单说&#xff0c;ORM 就是通过实例对象的语法&#xff0c;完成关系型数据库的操作的技术&#xff0c;是"对象-关系映射"&#xff08;Object/Relational Mapping&#xff09; 的缩写。使用 ORM框架可以让我们更方便…

医保电子凭证在项目中的集成应用

随着医保电子凭证使用普及&#xff0c;医疗行业的各个场景都要求支持医保码一码通办&#xff0c;在此分享一下&#xff0c;在C#和js中集成医保电子凭证的demo 供有需要的小伙伴参考。 一、项目效果图 在c#中集成医保电子凭证效果 在js中集成医保电子凭证效果 二、主要代码 c#…

【漏洞复现】FLIR AX8红外线热成像仪命令执行漏洞

漏洞描述 eledyne FLIR 设计、开发、制造以及强大的传感和意识技术。自透射热图像、可见光图像、可见频率分析、来自测量和诊断的先进威胁测量系统以及日常生活的创新解决方案。 Teledyne FLIR 提供多种产品用于政府、国防、工业和商业市场。我们的产品,紧急救援人员,军事人…

分割均衡字符串 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 均衡串定义:字符串只包含两种字符&#xff0c;且两种字符的个数相同。 给定一个均衡字符串&#xff0c;请给出可分割成新的均衡子串的最大个数。 约定字符串中只…

机器学习三个基本要素:优化算法

在确定了训练集 D、假设空间 ℱ 以及学习准则后&#xff0c;如何找到最优的模型&#x1d453;(x,θ∗) 就成了一个最优化&#xff08;Optimization&#xff09;问题。机器学习的训练过程其实就是最优化问题的求解过程。 参数与超参数 在机器学习中&#xff0c;优化又可以分为参…