人工智能(pytorch)搭建模型22-基于pytorch搭建SimpleBaseline(人体关键点检测)模型,并详细介绍该网络模型与代码实现

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型22-基于pytorch搭建SimpleBaseline(人体关键点检测)模型,并详细介绍该网络模型与代码实现。本文将介绍关于SimpleBaseline模型的原理,以及利用pytorch框架搭建模型,以及它的应用场景。SimpleBaseline模型是一个用于人体关键点检测的深度学习模型。它可以用来检测人体姿势中的关键点,如头部、肩膀、手肘、手腕、臀部、膝盖和脚踝等关键点。SimpleBaseline模型结合了卷积神经网络(CNN)和残差网络(ResNet)的特点,通过端到端的学习来实现对人体姿势关键点的准确定位。这种模型在计算机视觉领域得到了广泛的应用,例如在人体动作识别、体育分析、医学影像分析等方面具有重要意义。
在这里插入图片描述

目录

  1. 引言
  2. SimpleBaseline模型的概述
  3. SimpleBaseline模型的结构和原理
  4. pytorch搭建SimpleBaseline模型
  5. SimpleBaseline模型的应用场景
  6. 结论

1. 引言

近年来,随着深度学习的发展和计算机视觉技术的进步,人体关键点检测成为了计算机视觉领域的一个重要研究方向。人体关键点检测旨在从图像或视频中准确地识别和定位人体的关键点,如头部、肩膀、手肘、手腕、臀部、膝盖和脚踝等。

它是一种用于人体关键点检测的深度学习模型,它以其简单而高效的架构而闻名。该模型的设计思想是通过利用卷积神经网络(CNN)和残差网络(ResNet)的结构特点,实现对人体姿势关键点的准确定位。

2. SimpleBaseline模型的概述

SimpleBaseline模型是一种用于人体关键点检测的模型,它由北京大学的研究团队提出。该模型以其简单的设计和出色的性能获得了广泛的关注。它基于深度学习技术,使用卷积神经网络(CNN)作为基础结构,以识别并预测人体的关键点。
SimpleBaseline模型的核心结构包括一个骨干网络(backbone network)和一个关键点回归器(keypoint regressor)。骨干网络负责从输入图像中提取有用的特征表示,并将这些特征传递给关键点回归器进行关键点的定位。关键点回归器通过学习一个映射函数,将骨干网络提取的特征映射到真实世界中的关键点位置。该模型的训练过程通常采用监督学习的方法,即通过提供标注好的人体关键点位置作为训练数据,利用损失函数来优化模型参数,使其能够准确地预测出人体关键点的位置。该模型具有多种优点。首先,它的网络结构简单而高效,不需要过多复杂的设计和计算资源。其次,该模型在各种复杂环境下都能表现出较好的性能,具有较强的泛化能力。另外,SimpleBaseline模型在速度和准确度之间取得了良好的平衡,适用于实时应用和大规模数据处理。

3. SimpleBaseline模型的结构和原理

SimpleBaseline模型的核心是一个基于残差网络(ResNet)的卷积神经网络。基于ResNet的设计,允许信息能够有效地在网络的各层之间传递,从而有助于深层网络的训练。

首先,图像通过ResNet,生成一系列的特征图。然后,将这些特征图通过三个连续的卷积层和上采样层进行处理,生成更精细的特征图。最后,使用一个1x1的卷积层将特征图转化成关键点热力图。

模型的训练过程采用了均方误差损失函数,该损失函数比较了预测的关键点热力图和真实的关键点热力图之间的差异,以此来优化模型的参数。

SimpleBaseline是一种基于卷积神经网络(CNN)的图像关键点检测模型。其分为以下几个部分:

1.CNN特征提取:SimpleBaseline使用了一个预训练的ResNet作为特征提取器,通过卷积和池化等操作将输入的图像转换为高维特征向量。

2.Hourglass模块:Hourglass模块是SimpleBaseline中的核心部分,用于对特征进行多层次的处理和融合,以提高关键点检测的准确性。Hourglass模块由多个重复的下采样和上采样步骤组成,其中下采样过程中使用了池化和卷积等操作,而上采样过程中则使用了反卷积和残差连接等技术。

3.关键点预测:在Hourglass模块处理后,SimpleBaseline使用了一个小的卷积神经网络来对每个关键点进行回归预测。这个子网络包含了多个卷积和全连接层,其输出结果即为关键点的坐标位置。

SimpleBaseline模型的原理可以概括为利用卷积神经网络进行特征提取,结合Hourglass模块进行多层次处理和融合,最终使用子网络对关键点进行回归预测。
在这里插入图片描述

4. pytorch搭建SimpleBaseline模型

import torch
import torch.nn as nn
import torchvisionclass ResBlock(nn.Module):expansion = 4def __init__(self, inplanes, planes, stride=1, downsample=None):super(ResBlock, self).__init__()self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,bias=False)self.bn3 = nn.BatchNorm2d(planes * self.expansion)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.stride = stridedef forward(self, x):residual = xout = self.relu(self.bn1(self.conv1(x)))out = self.relu(self.bn2(self.conv2(out)))out = self.bn3(self.conv3(out))if self.downsample is not None:residual = self.downsample(x)out += residualreturn self.relu(out)class SimpleBaseline(nn.Module):def __init__(self, nJoints):super(SimpleBaseline, self).__init__()self.inplanes = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(ResBlock, 64, 3)self.layer2 = self._make_layer(ResBlock, 128, 4, stride=2)self.layer3 = self._make_layer(ResBlock, 256, 6, stride=2)self.layer4 = self._make_layer(ResBlock, 512, 3, stride=2)self.deconv_layers = self._make_deconv_layer()self.final_layer = nn.Conv2d(in_channels=256,out_channels=nJoints,kernel_size=1,stride=1,padding=0)def _make_layer(self, block, planes, blocks, stride=1):downsample = Noneif stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample))self.inplanes = planes * block.expansionfor i in range(1, blocks):layers.append(block(self.inplanes, planes))return nn.Sequential(*layers)def _make_deconv_layer(self):layers = []for i in range(3):layers.append(nn.ConvTranspose2d(in_channels=self.inplanes,out_channels=256,kernel_size=4,stride=2,padding=1,output_padding=0,bias=False))layers.append(nn.BatchNorm2d(256))layers.append(nn.ReLU(inplace=True))self.inplanes = 256return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.deconv_layers(x)x = self.final_layer(x)return xif __name__ == '__main__':model = SimpleBaseline(nJoints=16)print(model)data = torch.randn(1,3,256,192)out = model(data)print(out.shape)

5. SimpleBaseline模型的应用场景

SimpleBaseline模型的用途非常广泛,它可以在各种应用中进行人体关键点的检测。

1.体育分析:在体育比赛中,可以使用SimpleBaseline模型来追踪运动员的动作,从而进行更深入的运动分析。
2.健康监测:在医疗保健领域,可以通过分析人的行动来评估其健康状况。
3.游戏和娱乐:在视频游戏和增强现实应用中,可以使用该模型来捕捉玩家的动态,提供更富有沉浸感的体验。
4.安全监控:在安全监控中,可以通过分析行人的行为和动作,进行异常行为的检测。

5. 结论

SimpleBaseline模型是一种强大且易于实现的人体关键点检测模型。它利用深度学习技术,通过简单而有效的方法,实现了在各种应用场景中准确而高效的人体关键点检测。尽管该模型的结构相对简单,但其性能却与最先进的模型相媲美,这充分证明了其设计的优越性。
希望大家能从这篇文章中获得有关SimpleBaseline模型的深入理解,并在您的研究或应用中找到它的价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/217161.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯物联网竞赛_STM32L071_9_按键矩阵扩展模块

原理图: 矩阵按键原理图: 实验板接口原理图: 得到对应图: 扫描按键原理: 按键的COLUMN1、2、3分别制0,每次只允许其中一个为0其他都是1(POW1和POW2正常状况为上拉),当有…

快速排序的非递归实现

上期我们实现了快速排序的递归实现,但是我们知道如果递归深度太深,栈就会溢出,所以我们本期将为大家讲述快速排序的非递归实现,我们需要用到栈的数据结构,我们知道栈中的数据全是在堆区开辟的空间,堆的空间…

【docker】Hello World

搜索hello-world镜像 docker search hello-world拉去镜像 docker pull hello-world查看本地镜像 docker images 运行镜像 docker run hello-world查看所有的容器 docker ps -a查询start状态容器 docker ps 输出介绍 CONTAINER ID: 容器 ID。IMAGE: 使用的镜像。COMMAN…

elementui select中添加新增标签

<el-select v-model"ruleForm.eventType" :placeholder"请选择事件类型&#xff0c;可手动添加" ref"template" clearable visible-change"(v) > visibleChange(v, template)"><el-option v-for"item in eventTypeOp…

【离散数学】——期末刷题题库(欧拉图和哈密顿图)

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…

遥感图像之多模态检索AMFMN(支持关键词、句子对图像的检索)论文阅读、环境搭建、模型测试、模型训练

一、论文阅读 1、摘要背景 遥感跨模态文本图像检索以其灵活的输入和高效的查询等优点受到了广泛的关注。然而&#xff0c;传统的方法忽略了遥感图像多尺度和目标冗余的特点&#xff0c;导致检索精度下降。为了解决遥感多模态检索任务中的多尺度稀缺性和目标冗余问题&#xff…

从零构建属于自己的GPT系列6:模型部署2(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)

&#x1f6a9;&#x1f6a9;&#x1f6a9;Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1&#xff1a;数据预处理 从零构建属于自己的GPT系列2&#xff1a;模型训…

电子取证中Chrome各版本解密Cookies、LoginData账号密码、历史记录

文章目录 1.前置知识点2.对于80.X以前版本的解密拿masterkey的几种方法方法一 直接在目标机器运行Mimikatz提取方法二 转储lsass.exe 进程从内存提取masterkey方法三 导出SAM注册表 提取user hash 解密masterkey文件&#xff08;有点麻烦不太推荐&#xff09;方法四 已知用户密…

剧本杀小程序成为创业者新选择,剧本杀小程序开发

剧本杀作为现下年轻人最喜欢的新兴行业&#xff0c;发展前景非常乐观&#xff0c;即使剧本杀目前处于创新发展阶段&#xff0c;但剧本杀行业依然在快速发展中。 根据业内数据&#xff0c;预计2025年剧本杀市场规模能达到四百多亿元。市场规模的扩大自然也吸引来了不少的创业者…

蓝桥杯航班时间

蓝桥杯其他真题点这里&#x1f448; //飞行时间 - 时差 已过去的时间1 //飞行时间 时差 已过去的时间2 //两个式子相加会发现 飞行时间 两段时间差的和 >> 1import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader;public cl…

如何学习Kubernetes,学习K8S入门教程

学习 Kubernetes&#xff08;K8s&#xff09;确实不容易 你的硬件资源有限时&#xff0c;不过别担心&#xff0c;我帮你理清思路&#xff0c;让你在学习 K8s 的路上更加从容。 1、资源限制下的学习方法 当硬件资源有限时&#xff0c;一个好的选择是使用云服务提供的免费层或者…

最新鸿蒙HarmonyOS4.0开发登陆的界面2

登陆功能 代码如下&#xff1a; import router from ohos.router; Entry Component struct Index {State message: string XXAPP登陆State userName: string ;State password: string ;build() {Row() {Column({space:50}) {Image($r(app.media.icon)).width(200).interpol…

【EI会议征稿】第三届电力系统与电力工程国际学术会议(PSPE 2024)

第三届电力系统与电力工程国际学术会议&#xff08;PSPE 2024&#xff09; 2024 3rd International Conference on Power System and Power Engineering(PSPE 2024) 第三届电力系统与电力工程国际学术会议&#xff08;PSPE 2024&#xff09;于2024年3月29-31日在中国三亚隆重召…

DM8/达梦 数据库管理员使用手册详解

1.1DM客户端存放位置 Windows&#xff1a;DM数据库安装目录中tool文件夹和bin文件夹中。 Linux&#xff1a;DM数据库安装目录中tool目录和bin目录中。 1.2DM数据库配置助手 1.2.1Windows创建数据库 打开数据库配置助手dbca 点击创建数据库实例 选择一般用途 浏览选择数据库…

Shrio 安全框架

目录 前言 1.介绍 2.整合 Shiro 到 Spring Boot 3.Shiro 相关配置 总结 前言 几乎所有涉及用户的系统都需要进行权限管理&#xff0c;权限管理涉及到一个系统的安全。Spring Boot 的安全框架整合方案中还有一个璀璨的明珠&#xff1a;Shrio。 1.介绍 Shiro是一款由Java 编…

SQL自学通之函数 :对数据的进一步处理

目录 一、目标 二、汇总函数 COUNT SUM AVG MAX MIN VARIANCE STDDEV 三、日期/时间函数 ADD_MONTHS LAST_DAY MONTHS_BETWEEN NEW_TIME NEXT_DAY SYSDATE 四、数学函数 ABS CEIL 和FLOOR COS、 COSH 、SIN 、SINH、 TAN、 TANH EXP LN and LOG MOD POW…

大数据云计算之OpenStack

大数据云计算之OpenStack 1.什么是OpenStack&#xff0c;其作用是什么&#xff1f;OpenStack主要的组成模块有哪些&#xff1f;各自的主要作用是什么&#xff1f; OpenStack是一个开源的云计算平台&#xff0c;旨在为企业和服务提供商提供私有云和公有云的建设和管理解决方案…

c语言堆排序(详解)

堆排序 堆排序是一种基于二叉堆数据结构的排序算法&#xff0c;它的基本概念包括&#xff1a; 建立堆&#xff1a;将待排序的列表构建成一个二叉堆&#xff0c;即满足堆的性质的完全二叉树&#xff0c;可以是最大堆或最小堆。最大堆要求父节点的值大于等于其子节点的值&#x…

LLM之Prompt(三)| XoT:使用强化学习和蒙特卡罗树搜索将外部知识注入Prompt中,性能超过CoT,ToT和GoT

​论文地址&#xff1a;https://arxiv.org/pdf/2311.04254.pdf 一、当前Prompt技术的局限性 LLM使用自然语言Prompt可以将复杂的问题分解为更易于管理的“thought”可以回复用户的问题。然而&#xff0c;大多数现有的Prompt技术都有局限性&#xff1a; 输入输出&#xff08;I…

智能优化算法应用:基于正余弦算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于正余弦算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于正余弦算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.正余弦算法4.实验参数设定5.算法结果6.参考文…