MQ-Det: Multi-modal Queried Object Detection in the Wild

在这里插入图片描述
首个支持视觉和文本查询的开放集目标检测方法
NeurIPS2023
文章:https://arxiv.org/abs/2305.18980
代码:https://github.com/YifanXu74/MQ-Det

主框图

在这里插入图片描述
在这里插入图片描述

摘要

这篇文章提出了MQ-Det,一种高效的架构和预训练策略,它利用文本描述的开放集泛化能力和视觉示例的丰富描述粒度作为类别查询,即多模态查询目标检测。MQ-Det将视觉查询融入现有的仅基于语言查询的检测器。文章提出了一个即插即用的门控类可扩展感知器(GCP)模块,用于在冻结检测器上增强类别文本与类别相关的视觉信息。为了解决由于冻结检测器带来的学习惯性问题,提出了一种视觉条件的掩码语言预测策略。MQ-Det的简单而有效的架构和训练策略与大多数基于语言查询的目标检测器兼容,从而实现多种应用。实验结果表明,多模态查询大大提高了开放世界检测的性能。例如,MQ-Det在LVIS基准测试中显著提高了最先进的开放集检测器GLIP的性能,无需任何下游微调,相较于GLIP提高了7.8%的AP。在13个少样本下游任务中,MQ-Det平均提高了6.3%的AP,而GLIP仅需额外增加3%的调制时间。

引言

近年来,随着大规模视觉语言预训练模型的兴起,目标检测领域已经进入了一个全新的范式,即使用查询文本进行目标定位。受益于预训练模型在大规模数据上的泛化能力,这种文本查询范式在通向开放集目标检测的道路上取得了稳定的进步。

与传统的固定类别集合(通常由有限数量的数字表示)相比,文本查询可以表示更广泛的概念,但也存在描述粒度不足的内在限制。例如,类别同义词(如“bat"可以表示木头制作的球棒,也可以表示一种动物)会导致模糊的查询。与此同时,对于一些细粒度的类别(如图1所示的鱼类品种检测),仅使用有限的文本很难描述鱼类的具体模式。显然,解决文本查询描述粒度不足问题的一个直接方案是设计额外的文本描述,但这存在三个明显障碍:
1)很难全面描述视觉细节。为大量类别编写文本描述是一项繁琐的工作。
2)较长的查询文本会增加预训练模型的理解难度。
3)带来更多的计算开销。

最先进的文本查询检测器GLIP即使为一些类别设计了额外的文本描述,也只能在Aquarium数据集上将平均精度(AP)从17.7%提高到18.4%。与文本相比,图像可以提供更丰富的视觉线索。但同时,人工生成的文本具有更高的信息密度,因此具有更强的泛化能力。鉴于此,一个自然的想法是将文本和图像结合起来,构成多模态查询,兼具前者的广度和后者的丰富粒度。然而,如何获得这样的多模态查询检测模型仍面临挑战:
1)直接使用有限的视觉示例进行微调会导致灾难性遗忘。
2)大规模基础模型具有良好的泛化能力,但如果重新组织和从头训练,需要承担繁重的训练负担(例如,GLIP需要超过3000万的数据存储和近480个V100 GPU天的训练时间)。

本文填补了多模态查询目标检测(MQ-Det)的空白,提出了一种高效的插件式训练架构。MQ-Det的核心思想是融合描述丰富的视觉线索和具有很强泛化能力的文本表示,同时只需在现有基于语言查询的目标检测基础模型的基础上增加很小的训练成本。作者在Objects365数据集上对模型进行微调,仅占用GLIP预训练时间的3%,就能在LVIS基准测试中通过提供5个视觉示例和文本类别描述,将微调-free的性能显著提高7.8%。

为了实现这一目标,作者提出了一个即插即用的Gated Class-scalable Perceiver (GCP)模块,用于在文本编码器的每个高级阶段动态融合信息丰富的视觉线索和高度泛化的语言线索。另外,作者还设计了一种视觉条件的掩码语言预测策略,以确保在冻结检测模型的基础上进行足够的多模态融合。作者观察到,在将视觉线索以门控残差的方式加入时,学习过程往往会陷入初始优化点附近的局部最优,而无法引入足够的视觉知识。因此,作者随机mask文本tokens,让对应的视觉查询独立地进行目标预测。作者冻结初始的检测基础模型,只训练调制阶段的GCP模块,这非常高效。

综上,本文的贡献如下:
1)首个引入既具有广度又具有丰富粒度的多模态查询的工作,为开放集目标检测开辟了一条新路。
2)提出了一个即插即用的GCP模块,用于动态融合多模态查询中信息丰富的视觉线索和高度泛化的语言线索,并采用视觉条件的掩码语言预测策略,在冻结检测模型的基础上实现充分的多模态融合。
3)MQ-Det在finetune-free和few-shot场景下展现出强大的迁移能力,而所需的训练时间远少于之前的最先进基础检测器。具体来说,MQ-Det在具有挑战性的LVIS基准测试中,相比GLIP提高了7.8%的AP,在13个下游few-shot检测任务[23]中平均提高了6.3%的AP,而调制过程仅占用了GLIP所需训练时间的3%。

方法

Gated Class-scalable Perceiver(GCP)

在第2.2节中,作者提出了一种名为Gated Class-scalable Perceiver(GCP)的即插即用架构,用于将视觉查询融入预训练的语言查询目标检测模型。具体来说,GCP模块被设计插入到文本编码器的每个高级阶段之间,以动态融合来自视觉查询的类相关视觉信息。
GCP模块包含以下两个关键组件:
1)类相关的交叉注意力层:每个类别的文本查询令牌独立地与对应的视觉查询进行交叉注意力计算,以获取丰富的视觉细节。这种设计没有类别特定的参数,可以扩展到不同粒度的类别。2)门控层:根据视觉查询的质量,动态调整交叉注意力产生的增强视觉特征的权重。这通过一个MLP层实现,它将交叉注意力的结果和文本查询令牌作为输入,产生一个标量门控值。门控值初始化为0,这样在训练开始时,输出与预训练文本编码器匹配,有助于训练稳定性和最终性能。
通过在文本编码器中以残差方式加入GCP模块的输出,该模块可以无缝地融合视觉和语言查询。由于GCP没有类别特定的参数,它可以很容易地应用于各种预训练的语言查询目标检测模型,如GLIP和GroundingDINO。此外,GCP允许模型在推理时泛化到任何数量的类和视觉查询,增强了通用性。总的来说,这种即插即用的GCP架构为有效地将视觉查询融入语言查询目标检测模型提供了一个简单而有效的设计。它为多模态查询目标检测提供了坚实的基础。

Modulated pre-training

在第2.3节中,作者提出了一种调制预训练的策略,通过在大规模图像文本数据集上进行额外的训练,将视觉查询融入预训练的语言查询目标检测模型。具体来说,调制预训练包含以下步骤:
1)提取视觉查询:从包含视觉实例的大型数据集(D)中提取视觉查询。每个类别的查询数远多于最终使用的查询数(k)。
2)在冻结的检测器上训练GCP模块:只训练新加入的GCP模块,而冻结预训练的语言查询目标检测模型(如GLIP)。这大大减少了训练时间。
3)视觉条件的掩码语言预测:为了解决仅依赖文本特征导致的学习惯性问题,提出了一种视觉条件的掩码语言预测策略。随机mask文本tokens,让模型从视觉查询中提取信息进行预测。这确保了视觉查询在训练中的充分参与。

微调

在调制预训练之后,可以对模型进行微调,以适应下游任务。由于GCP模块是即插即用的,微调也可以只针对GCP模块进行,而保持预训练模型的其他部分冻结。这只需要很少的计算资源。通过这种调制预训练策略,模型可以接受文本和视觉查询作为输入,实现多模态目标检测,而只需在预训练模型上增加很小的训练成本。实验结果表明,这种策略在finetune-free和few-shot场景下都取得了显著的性能提升。它使模型能够利用语言查询的泛化能力和视觉查询的丰富粒度。

结果

zero-shot结果

在这里插入图片描述

few-shot结果

在这里插入图片描述

消融结果

在这里插入图片描述

其他结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/217707.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS的箭头函数this:

箭头函数不会创建自己的this,它只会从自己的作用域链的上一层沿用this。 具体看实例: //以前:谁调用的这个函数 this就指向谁// console.log(this);//window// function fn(){// console.log(this);//window 因为这个函数也是window调用…

【Vue+Python】—— 基于Vue与Python的图书管理系统

文章目录 🍖 前言🎶一、项目描述✨二、项目展示🏆三、撒花 🍖 前言 【VuePython】—— 基于Vue与Python的图书管理系统 🎶一、项目描述 描述: 本项目为《基于Vue与Python的图书管理系统》,项目…

hive的分区表和分桶表详解

分区表 Hive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区,这样的查询效率会提高很多。 静态分区表基本语法 创建分区表 create table dept_p…

Android 移动端编译 cityhash动态库

最近做项目, 硬件端 需要 用 cityhash 编译一个 动态库 提供给移动端使用,l 记录一下 编译过程 city .cpp // // Created by Administrator on 2023/12/12. // // Copyright (c) 2011 Google, Inc. // // Permission is hereby granted, free of charg…

54 代码审计-TP5框架审计写法分析及代码追踪

目录 知识点1知识点2演示案例:demo代码段自写和规则写分析hsycms-TP框架-不安全写法-未过滤weipan21-TP框架-规则写法-内置过滤 知识点1 调试,访问,路由,配置,版本等 知识点2 自写写法:自己写代码,一步步…

以csv为源 flink 创建paimon 临时表相关 join 操作

目录 概述配置关键配置测试启动 kyuubi执行配置中的命令 bug解决bug01bug02 结束 概述 目标:生产中有需要外部源数据做paimon的数据源,生成临时表,以使用与现有正式表做相关统计及 join 操作。 环境:各组件版本如下 kyuubi 1.8…

互联网加竞赛 python 爬虫与协同过滤的新闻推荐系统

1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python 爬虫与协同过滤的新闻推荐系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖&…

迅速理解什么是通信前置机

通信前置机设在两个通信对象之间,是实质性的物理服务器,适应不同通信协议或数据格式之间的相互转换。 前置机的作用: 隔离——隔离客户端与服务端,保障后端安全减负——处理非核心业务,分担后端服务器压力&#xff0…

Microsoft 365 Copilot正式上线,如何稳定访问体验?

如果将微软对人工智能的投资看成一场豪赌,Microsoft Copilot无疑是现阶段最受瞩目的赌注。2023年9月正式发布的Microsoft Copilot是一种基于大型语言模型(LLM)和微软图形(Microsoft Graph)的数据和人工智能&#xff08…

Maven环境搭建及配置

Maven环境搭建及配置 1.下载部署 官方网站下载正式版的Maven文件,打开bin目录,复制路径然后去环境变量中的path下配置环境变量, 如果只有一个用户只需要在上面path配置复制的路径,当然也可以直接在下面配置,下面配置默认给所有用户都配置 设置完成打开控…

MIT线性代数笔记-第28讲-正定矩阵,最小值

目录 28.正定矩阵,最小值打赏 28.正定矩阵,最小值 由第 26 26 26讲的末尾可知在矩阵为实对称矩阵时,正定矩阵有以下四种判定方法(都是充要条件): 所有特征值都为正左上角所有 k k k阶子矩阵行列式都为正&…

软考科目如何选择?

软考科目繁多,让许多学弟学妹感到困惑,不知道该选择哪个科目。以下是一些建议,可以根据个人实际需求选择备考的科目。 1、初级是可选的 软考初级非常简单,适合刚刚入门学习的朋友报考。对于一些有基础的朋友,建议直接…

【后端开发】Next.js 13.4:前端开发的游戏规则改变者!

自我介绍 做一个简单介绍,酒架年近48 ,有20多年IT工作经历,目前在一家500强做企业架构.因为工作需要,另外也因为兴趣涉猎比较广,为了自己学习建立了三个博客,分别是【全球IT瞭望】,【…

微服务实战系列之MQ

前言 从今天起,席卷北国的雪,持续了一整天,北京也不例外。这场意外的寒潮,把整个冬天渲染的格外cool。当然你可以在外面打雪仗、堆雪人、拉雪橇,也可以静坐屋内,来一场围炉煮茶的party。此刻,冬…

世界第一个语言不通的人是如何沟通的?

引言:语言是人类交流的重要工具,但在人类历史的某个时刻,肯定会有这样一位勇敢的先驱,他成为了世界上第一个语言不通的人。那么在他面临交流难题时,他是如何与他人沟通的呢?本文将对此进行探索。主体&#…

18 5G - NR物理层解决方案支持6G非地面网络中的高移动性

文章目录 非地面网络场景链路仿真参数实验仿真结果 非地面网络场景 链路仿真参数 实验仿真结果 Figure 5 && Figure 6:不同信噪比下的BER和吞吐量 变量 SISO 2x2MIMO 2x4MIMO 2x8MIMOReyleigh衰落、Rician衰落、多径TDL-A(NLOS) 、TDL-E(LOS)(a)QPSK (b)16…

HTML行内元素和块级元素的区别? 分别有哪些?

目录 一、行内元素和块级元素的区别二、行内元素和块级元素分别有哪些1、行内元素2、块级元素 一、行内元素和块级元素的区别 1、行内元素不会占据整行,在一条直线上排列,都是同一行,水平方向排列;    2、块级元素可以包含行内…

C语言—每日选择题—Day42

第一题 1. 下面程序输出的结果是&#xff08;&#xff09; #include <stdio.h> int main () {int x;x printf("I See, Sea in C");printf("x%d" , x); } A&#xff1a;2 B&#xff1a;随机值 C&#xff1a;都不是 D&#xff1a;15 答案及解析 D p…

人工智能:机器与人类的对决

一、引言 随着科技的飞速发展&#xff0c;人工智能已经逐渐渗透到我们生活的方方面面。从智能手机到自动驾驶汽车&#xff0c;从语音识别到机器翻译&#xff0c;人工智能已经成为我们生活中不可或缺的一部分。然而&#xff0c;随着人工智能的不断演进&#xff0c;人们开始担心…

数据结构——队列

目录 一、队列的定义 二、队列的实现 1. 队列的顺序存储结构 1.1. 顺序队 1. 创建顺序队 2. 删除顺序队 3. 判断队列是否为空 4. 判断队列是否已满 5. 入队 6. 出队 7. 获取队列长度 8. 获取队首元素 1.2. 环形队 1. 创建环形队 2. 删除环形队 3. 判断环形队列…