《opencv实用探索·十九》光流法检测运动目标

前言
光流法(Optical Flow)是计算机视觉中的一种技术,用于估计图像中相邻帧之间的像素位移或运动。它是一种用于追踪图像中物体运动的技术,可以在视频中检测并测量物体的运动轨迹。
光流的直观理解:
光流是一个视频中两个连续帧之间的逐像素运动估计任务。基本上,光流任务意味着计算像素的移动向量作为物体在两个相邻图像之间的位移差。光流的主要思想是估计物体运动或摄像机运动引起的物体的位移矢量
在这里插入图片描述

光流法基于以下两个主要假设:

灰度恒定假设(Brightness Constancy Assumption): 在短时间内,相邻帧中的像素灰度值保持不变。这意味着在相邻帧中,同一物体的灰度值应该是相似的。

空间一致性假设(Spatial Coherence Assumption): 邻近像素点的运动是相似的。这意味着在一个小的局部区域内,像素点的运动可以通过一个共同的运动向量来描述。

基于这些假设,光流法的目标是计算场景中每个像素点在图像平面上的运动矢量。这些运动矢量描述了像素从一帧到下一帧的位移。
在光流法的实现中,有几种不同的方法,其中最常见的是Lucas-Kanade方法和Horn-Schunck方法。
Lucas-Kanade方法: 该方法基于灰度恒定和空间一致性假设,通过在图像上的局部区域内求解一个线性方程组来计算运动矢量。它假设邻近像素点的运动是相似的,因此在局部区域内使用最小二乘法来估计运动。
Horn-Schunck方法: 该方法通过最小化整个图像上的一个全局能量函数来计算光流场。它对整个图像施加了平滑性的约束,因此在处理相对较大的运动时效果较好。

总体而言,光流法是一种有用的技术,尤其在分析视频中物体的运动、跟踪目标或检测异常事件时。然而,它的性能可能受到场景中运动的复杂性、遮挡、图像噪声等因素的影响,因此在特定应用中需要仔细考虑其局限性。

流光法检测中需要用到的一些函数说明:
(1)cv::goodFeaturesToTrack

void cv::goodFeaturesToTrack(InputArray image, // 输入图像(通常是灰度图像)OutputArray corners, // 输出参数,包含检测到的角点坐标int maxCorners, // 要检测的角点的最大数量double qualityLevel, // 角点的质量水平阈值,范围在0到1之间double minDistance, // 检测到的角点之间的最小欧氏距离。两个角点之间的距离小于该值的角点将被忽略。InputArray mask = noArray(), // 可选参数,用于指定感兴趣区域int blockSize = 3, // 角点检测中使用的邻域区域的大小bool useHarrisDetector = false, // 是否使用Harris角点检测算法,如果为false,则使用Shi-Tomasi角点检测算法double k = 0.04 // Harris角点检测算法的自由参数
);

cv::goodFeaturesToTrack 是OpenCV中用于在图像中检测角点的函数,通常用于计算机视觉中的光流法等任务。这个函数实现了 Shi-Tomasi 角点检测算法,该算法是对 Harris 角点检测算法的改进。
关键参数的设置说明:
maxCorners:如果设置得太小,可能会错过图像中的一些重要角点。如果设置得太大,算法可能检测到冗余的角点,导致性能下降。

qualityLevel:一般情况下设置0.01,较小的 qualityLevel 值会选择图像中质量较高的角点,即灰度梯度变化较为显著的地方。相应地,检测到的角点数量可能相对较少。这个设置适合于希望选择图像中明显特征的情况,例如在纹理较强的区域选择角点。较大的 qualityLevel 值会放宽对角点质量的要求,接受更多的角点,即使它们的质量不太高。这个设置适合于希望检测到更多角点,即使它们的特征不如较高质量的角点明显的情况。

minDistance: 选择通常取决于图像中角点的分布情况。如果图像中的角点密集分布,可以选择较小的值,例如 5-10 像素。如果角点分布较稀疏,可以适当增大该值。

(2)calcOpticalFlowPyrLK(Lucas-Kanade光流算法)

void cv::calcOpticalFlowPyrLK(cv::InputArray prevImg,cv::InputArray nextImg,cv::InputArray prevPts,cv::InputOutputArray nextPts,cv::OutputArray status,cv::OutputArray err,cv::Size winSize = Size(21, 21),int maxLevel = 3,cv::TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0.01),int flags = 0,double minEigThreshold = 1e-4
);

calcOpticalFlowPyrLK 是 OpenCV 库中用于光流计算的函数之一,用于在两幅图像之间计算稀疏特征点的光流。
prevImg: 先前帧的输入图像(灰度图)。
nextImg: 下一帧的输入图像(灰度图)。
prevPts: 先前帧的输入特征点。
nextPts: 输出参数,包含了在下一帧中找到的对应特征点的坐标。
status: 输出参数,标志每个特征点的跟踪状态(1表示成功,0表示失败)。
err: 输出参数,包含每个特征点的误差。
winSize: 搜索窗口的大小。
maxLevel: 金字塔的最大层数。
criteria: 用于迭代优化的终止准则。
flags: 光流计算的选项。
minEigThreshold: 特征值的阈值,用于判断矩阵是否足够良好。

光流法检测基本流程:
(1)获取两幅相邻的图像帧。这两帧图像之间的时间间隔应足够小,以便近似相邻帧之间的物体位移。对图像进行必要的预处理,例如灰度化、去噪、边缘检测等。预处理的目标是提取图像中的特征,以便在不同帧之间匹配。
(2)在两帧图像中检测特征点。常用的特征点包括角点、角落、边缘等。
(3)计算光流场:光流场表示图像中每个像素的位移向量。计算光流场的目标是找到相邻帧中每个特征点的位移。常见的光流计算方法包括:
Lucas-Kanade方法: 假设在一个小的邻域内,光流是基本一致的。通过局部的亮度梯度来估计位移。
Horn-Schunck方法: 基于全局约束的光流计算方法,考虑整个图像中的光流场。
(4)可以将计算得到的光流场可视化,以便观察物体的运动方向和速度。通常使用箭头或其他标记来表示光流向量。

代码示例:

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;//-----------------------------------【全局函数声明】-----------------------------------------
//		描述:声明全局函数
//-------------------------------------------------------------------------------------------------
void tracking(Mat& frame, Mat& output);//-----------------------------------【全局变量声明】-----------------------------------------
//		描述:声明全局变量
//-------------------------------------------------------------------------------------------------
string window_name = "optical flow tracking";
Mat gray_now;	// 当前图片
Mat gray_prev;	// 预测图片
vector<Point2f> pointsPre;	// 上一帧角点集合
vector<Point2f> pointsNow;  //下一帧角点集合
vector<Point2f> pointsPreTmp;	// 一个临时容器,存放上一帧角点集合
vector<Point2f> features;	// 检测的特征
int maxCount = 500;	// 检测的最大特征数
double qLevel = 0.01;	// 特征检测的等级
double minDist = 10.0;	// 两特征点之间的最小距离
vector<uchar> status;	// 跟踪特征的状态,特征的流发现为1,否则为0
vector<float> err;int main()
{Mat frame;Mat result;VideoCapture capture("1.avi");if (capture.isOpened())	// 摄像头读取文件开关{//获取第一帧图像并保存计算的角点capture >> frame;if (!frame.empty()){cvtColor(frame, gray_prev, COLOR_BGR2GRAY);//角点检测goodFeaturesToTrack(gray_prev, features, maxCount, qLevel, minDist);//存放检测的角点pointsPre.insert(pointsPre.end(), features.begin(), features.end());//临时容器在存放一份角点pointsPreTmp.insert(pointsPreTmp.end(), features.begin(), features.end());}while (true){//循环采取下一帧图像capture >> frame;if (!frame.empty()){tracking(frame, result);}else{printf(" --(!) No captured frame -- Break!");break;}int c = waitKey(50);if ((char)c == 27){break;}}}return 0;
}//-------------------------------------------------------------------------------------------------
// function: tracking
// brief: 跟踪
// parameter: frame	输入的视频帧
//			  output 有跟踪结果的视频帧
// return: void
//-------------------------------------------------------------------------------------------------
void tracking(Mat& frame, Mat& output)
{cvtColor(frame, gray_now, COLOR_BGR2GRAY);frame.copyTo(output);// 添加特征点if (pointsPre.size() <= 10)  //如果角点的数量过少就继续添加{//角点检测goodFeaturesToTrack(gray_prev, features, maxCount, qLevel, minDist);//存放检测的角点pointsPre.insert(pointsPre.end(), features.begin(), features.end());//临时容器在存放一份角点pointsPreTmp.insert(pointsPreTmp.end(), features.begin(), features.end());}//Lucas-Kanade光流法运动估计(pointsNow存放的是估计下一帧gray_now图像中的特征点)calcOpticalFlowPyrLK(gray_prev, gray_now, pointsPre, pointsNow, status, err);// 保留下一帧中估计出的比较好的特征点int k = 0;for (size_t i = 0; i < pointsNow.size(); i++){//设置跟踪点被接受的条件//status[i]:表示第 i 个特征点的跟踪状态,为1表示特征点的流被检测到,为0表示未检测到。//前后两次点的x移动距离 + y移动距离 > 2if (status[i] && ((abs(pointsPre[i].x - pointsNow[i].x) + abs(pointsPre[i].y - pointsNow[i].y)) > 2)){pointsPreTmp[k] = pointsPreTmp[i];   //保留了下一帧好的特征点,那么对应的上一帧同样位置的特征点重新备份到临时容器pointsNow[k++] = pointsNow[i];      //重新对下一帧角点容器进行更新,保存存放的都是好的特征点}}//重新更新两个容器长度pointsNow.resize(k);pointsPreTmp.resize(k);// 显示特征点和运动轨迹for (size_t i = 0; i < pointsNow.size(); i++){line(output, pointsPreTmp[i], pointsNow[i], Scalar(0, 0, 255)); //画出直线起点为上一帧特征点,终点为下一帧特征点circle(output, pointsNow[i], 3, Scalar(0, 255, 0), -1);         //对下一帧特征点标记圆,可以明显看出运动方向}// 采集下一帧图像之前先把当前帧的结果更新到上一帧pointsPre = pointsNow;gray_prev = gray_now.clone();imshow(window_name, output);
}

代码分析:
(1)先采集第一帧当作上一帧,进行角点检测存放到容器
(2)进入while循环开启采集下一帧,通过Lucas-Kanade光流法估计上一帧角点在下一帧的位置
(3)筛选下一帧比较好的角点存放容器
(4)画出上一帧到下一帧路线进行显示
(5)在继续开启下一帧图像采集前把这一帧的结果更新到上一帧容器
(6)开启一个新的循环,先判断上一帧容器角点数量是否充足,不充足则添加,然后重复上述步骤

效果显示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/217887.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web微服务规划

一、背景 通过微服务来搭建web系统&#xff0c;就要对微服务进行规划&#xff0c;包括服务的划分&#xff0c;每个服务和数据库的命名规则&#xff0c;服务用到的端口等。 二、微服务划分 1、根据业务进行拆分 如&#xff1a; 一个购物系统可以将微服务拆分为基础中心、会员…

C++_类的定义和使用

目录 1、类的引用 1.1 类的成员函数 1.2 类成员函数的声明和定义 2、类的定义 2.1 类的访问限定&#xff08;封装&#xff09; 3、类重名问题 4、类的实例化 4.1 类的大小 5、隐含的this指针 5.1 空指针问题 结语&#xff1a; 前言&#xff1a; C的类跟c语言中的结…

VRRP协议详解

目录 一、基础概念 1、概念 2、VRRP的基本结构 状态机 二、VRRP主备备份工作过程 1、备份工作过程 2、VRRP的负载分担工作 三、实验 一、基础概念 1、概念 VRRP能够在不改变组网的情况下&#xff0c;将多台路由器虚拟成一个虚拟路由器&#xff0c;通过配置虚拟路由器的I…

自媒体新闻中心-后台管理端

0.本节内容说明 本节主要是一个功能概述&#xff0c;了解清楚这个这个后台管理端做的什么&#xff0c;以及实现的思路&#xff0c;具体的实现代码部分&#xff0c;后面讲解 1.后台功能概述 登陆: 账号密码登陆&#xff0c;或者是账号人脸进行登陆内容审核&#xff1a;对于用户…

【Stable Diffusion】在windows环境下部署并使用Stable Diffusion Web UI---通过 Conda

本专栏主要记录人工智能的应用方面的内容&#xff0c;包括chatGPT、AI绘图等等&#xff1b; 在当今AI的热潮下&#xff0c;不学习AI&#xff0c;就要被AI淘汰&#xff1b;所以欢迎小伙伴加入本专栏和我一起探索AI的应用&#xff0c;通过AI来帮助自己提升生产力&#xff1b; 订阅…

DevOps 和人工智能 – 天作之合

如今&#xff0c;人工智能和机器学习无处不在&#xff0c;所以它们开始在 DevOps 领域崭露头角也毫不令人意外。人工智能和机器学习正在通过自动化任务改变 DevOps&#xff0c;并使各企业的软件开发生命周期更高效、更深刻和更安全。我们在 DevOps 趋势中简要讨论过这一问题&am…

LeetCode力扣每日一题(Java)66、加一

每日一题在昨天断开了一天&#xff0c;是因为作者沉迷吉他&#xff0c;无法自拔……竟然把每日一题给忘了&#xff0c;所以今天&#xff0c;发两篇每日一题&#xff0c;把昨天的给补上 一、题目 二、解题思路 1、我的思路 其实乍一看这道题还是比较简单的&#xff0c;就是让…

记录 | linux安装Manim

linux 安装 Manim sudo apt update sudo apt install build-essential python3-dev libcairo2-dev libpango1.0-dev ffmpeg sudo apt install xdg-utilsconda create manim_py39 python3.9 conda activate manim_py39pip install manim安装好环境后来测试一个例程&#xff0c;…

Gitlab+GitlabRunner搭建CICD自动化流水线将应用部署上Kubernetes

文章目录 安装Gitlab服务器准备安装版本安装依赖和暴露端口安装Gitlab修改Gitlab配置文件访问Gitlab 安装Gitlab Runner服务器准备安装版本安装依赖安装Gitlab Runner安装打包工具安装docker安装java17安装maven 注册Gitlab Runner 搭建自动化部署准备SpringBoot项目添加一个Co…

企业IT安全:内部威胁检测和缓解

什么是内部威胁 内部威胁是指由组织内部的某个人造成的威胁&#xff0c;他们可能会造成损害或窃取数据以谋取自己的经济利益&#xff0c;造成这种威胁的主要原因是心怀不满的员工。 任何内部人员&#xff0c;无论是员工、前雇员、承包商、第三方供应商还是业务合作伙伴&#…

el-table的复选框占满全格

el-table的复选框格子很小每次点击都点不到&#xff0c;又不想设置行点击&#xff0c;因为每次复制内容都会选中&#xff0c;实现效果是点击el-table的复选框单元格就可以选中 <template><div style"width: 60vw; margin: 10px;"><el-table :data&quo…

openHarmony添加system_basic权限安装报错

openHarmony添加system_basic权限安装报错 12/14 13:49:57: Install Failed: [Info]App install path:D:\huawei\project\FCTTest\entry\build\default\outputs\default\entry-default-signed.hap, queuesize:0, msg:error: failed to install bundle. error: install failed …

动态内存管理,malloc和calloc以及realloc函数用法

目录 一.malloc函数的介绍 malloc的用法 举个例子 注意点 浅谈数据结构里的动态分配空间 二.calloc函数的介绍 三.realloc函数的介绍 四.柔性数组的介绍 为什么有些时候动态内存函数头文件是malloc.h,有些时候却是stdlib.h 一.malloc函数的介绍 malloc其实就是动态开辟…

Docker, Docker-compose部署Sonarqube

参考文档 镜像地址: https://hub.docker.com/_/sonarqube/tags Docker部署文档地址 Installing from Docker | SonarQube Docs Docker-compose文档部署地址&#xff1a; Installing from Docker | SonarQube Docs 部署镜像 2.1 docker部署 # 宿主机执行 $. vi /etc/sysctl.conf…

网络安全——SQL注入实验

一、实验目的要求&#xff1a; 二、实验设备与环境&#xff1a; 三、实验原理&#xff1a; 四、实验步骤&#xff1a; 五、实验现象、结果记录及整理&#xff1a; 六、分析讨论与思考题解答&#xff1a; 七、实验截图&#xff1a; 一、实验目的要求&#xff1a; 1、…

言简意赅的 el-table 跨页多选

步骤一 在<el-table>中:row-key"getRowKeys"和selection-change"handleSelectionChange" 在<el-table-column>中type"selection"那列&#xff0c;添加:reserve-selection"true" <el-table:data"tableData"r…

嵌入式开发板qt gdb调试

1&#xff09; 启动 gdbserver ssh 或者 telnet 登陆扬创平板 192.168.0.253&#xff0c; 进入命令行执行如下&#xff1a; chmod 777 /home/HelloWorld &#xff08;2&#xff09; 打 开 QTcreator->Debug->StartDebugging->Attach to Running Debug Server 进行…

音乐制作软件Ableton Live 11 mac功能特点

Ableton Live 11 mac是一款数字音频工作站软件&#xff0c;用于音乐制作、录音、混音和现场演出是一款流行的音乐制作软件。 Ableton Live 11 mac特点和功能 Comping功能&#xff1a;Live 11增加了Comping功能&#xff0c;允许用户在不同的录音轨道上进行多次录音&#xff0c;…

西南科技大学数字电子技术实验四(基本触发器逻辑功能测试及FPGA的实现)预习报告

一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入法完成相关公式内容,不得贴手写图片。(注意:从抽象公式直接得出结果,不得分,页数可根据内容调整) (1)D触发器 特征方程: Q…

网络层--TCP/UDP协议

目录 一、TCP/UDP协议介绍 1、UDP(User Datagram Protocol)--用户数据报协议 1.1 UDP报文格式 1.2 UDP协议的特性 2、TCP(Transmission Control Protocol )--传输控制协议 2.1 TCP报文格式 2.2 TCP协议的特性 2.3 TCP三次握手 2.4 四次挥手 三、TCP和UDP的区别 四、t…