5. PyTorch——数据处理模块

1.数据加载

在PyTorch中,数据加载可通过自定义的数据集对象。数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法:

  • __getitem__:返回一条数据,或一个样本。obj[index]等价于obj.__getitem__(index)
  • __len__:返回样本的数量。len(obj)等价于obj.__len__()

这里以Kaggle经典挑战赛"Dogs vs. Cat"的数据为例。"Dogs vs. Cats"是一个分类问题,判断一张图片是狗还是猫,其所有图片都存放在一个文件夹下,根据文件名的前缀判断是狗还是猫。

import numpy as np
import torch as timport osfrom PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms as T
class DogCat(Dataset):def __init__(self, root):imgs = os.listdir(root)        # 所有图片的相对路径self.imgs = [os.path.join(root, img) for img in imgs]    # 这里不实际加载图片,只是指定路径,当调用__getitem__时才会真正读图片def __getitem__(self, index):img_path = self.imgs[index]# dog -> 1, cat -> 0label = 1 if 'dog' in img_path.split('/')[-1] else 0pil_img = Image.open(img_path)array = np.asarray(pil_img)data = t.from_numpy(array)return data, labeldef __len__(self):return len(self.imgs)
dataset = DogCat('data/dogcat/')for img, label in dataset:print(img.size(), img.float().mean(), label)
torch.Size([500, 497, 3]) tensor(106.4915) 0
torch.Size([499, 379, 3]) tensor(171.8085) 0
torch.Size([236, 289, 3]) tensor(130.3004) 0
torch.Size([374, 499, 3]) tensor(115.5177) 0
torch.Size([375, 499, 3]) tensor(116.8139) 1
torch.Size([375, 499, 3]) tensor(150.5079) 1
torch.Size([377, 499, 3]) tensor(151.7174) 1
torch.Size([400, 300, 3]) tensor(128.1550) 1

这里返回的数据不适合实际使用,因其具有如下两方面问题:

  • 返回样本的形状不一,因每张图片的大小不一样,这对于需要取batch训练的神经网络来说很不友好
  • 返回样本的数值较大,未归一化至[-1, 1]

针对上述问题,PyTorch提供了torchvision1。它是一个视觉工具包,提供了很多视觉图像处理的工具,其中transforms模块提供了对PIL Image对象和Tensor对象的常用操作。

对PIL Image的操作包括

  • Scale:调整图片尺寸,长宽比保持不变
  • CenterCropRandomCropRandomResizedCrop: 裁剪图片
  • Pad:填充
  • ToTensor:将PIL Image对象转成Tensor,会自动将[0, 255]归一化至[0, 1]

对Tensor的操作包括

  • Normalize:标准化,即减均值,除以标准差
  • ToPILImage:将Tensor转为PIL Image对象

如果要对图片进行多个操作,可通过Compose函数将这些操作拼接起来,类似于nn.Sequential。注意,这些操作定义后是以函数的形式存在,真正使用时需调用它的__call__方法,这点类似于nn.Module。例如要将图片调整为 224 × 224 224\times 224 224×224,首先应构建这个操作trans = Resize((224, 224)),然后调用trans(img)。下面我们就用transforms的这些操作来优化上面实现的dataset。

transform = T.Compose([T.Resize(224),              # 缩放图片Image,保持长宽比不变,最短边为224T.CenterCrop(224),          # 从图片中间切出224*224的图片T.ToTensor(),               # 将图片Image转成Tensor,归一化至[0,1]T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5])      # 标准化至[-1,1],规定均值和标准差
])
class DogCat(Dataset):def __init__(self, root, transform):imgs = os.listdir(root)self.imgs = [os.path.join(root, img) for img in imgs]self.transform = transformdef __getitem__(self, index):img_path = self.imgs[index]# dog->0, cat->1label = 0 if 'dog' in img_path.split('/')[-1] else 1data = Image.open(img_path)if self.transform:data = self.transform(data)return data, labeldef __len__(self):return len(self.imgs)
dataset = DogCat('data/dogcat/', transform=transform)for img, label in dataset:print(img.size(), label)
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0

torchvision已经预先实现了常用的Dataset,包括经典的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用,具体使用方法请参看官方文档1。在这里介绍一个会经常使用到的Dataset——ImageFolder,它的实现和上述的DogCat很相似。ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

  • root:在root指定的路径下寻找图片
  • transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象
  • target_transform:对label的转换
  • loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

from torchvision.datasets import ImageFolder
dataset = ImageFolder('data/dogcat_2/')
dataset.class_to_idx    # cat文件夹的图片对应label 0, dog对应1
{'cat': 0, 'dog': 1}
dataset.imgs     # 所有图片的路径和对应的label
[('data/dogcat_2/cat\\cat.12484.jpg', 0),('data/dogcat_2/cat\\cat.12485.jpg', 0),('data/dogcat_2/cat\\cat.12486.jpg', 0),('data/dogcat_2/cat\\cat.12487.jpg', 0),('data/dogcat_2/dog\\dog.12496.jpg', 1),('data/dogcat_2/dog\\dog.12497.jpg', 1),('data/dogcat_2/dog\\dog.12498.jpg', 1),('data/dogcat_2/dog\\dog.12499.jpg', 1)]
# 没有任何的transform,所以返回的还是PIL Image对象
dataset[0][1]      # 第一维是第几张图,第二维为1返回label
dataset[0][0]      # 为0返回图片数据

在这里插入图片描述

# 加上transform
normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([T.RandomResizedCrop(224),T.RandomHorizontalFlip(),T.ToTensor(),normalize,
])
dataset = ImageFolder('data/dogcat_2/', transform=transform)
dataset[0][0].size()     # 通道数×图片高×图片宽   C×H×W
torch.Size([3, 224, 224])
to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
to_img(dataset[0][0]*0.2+0.4)

在这里插入图片描述

Dataset只负责数据的抽象,一次调用__getitem__只返回一个样本。前面提到过,在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader帮助我们实现这些功能。

DataLoader的函数定义如下:
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False)

  • dataset:加载的数据集(Dataset对象)
  • batch_size:batch size
  • shuffle::是否将数据打乱
  • sampler: 样本抽样,后续会详细介绍
  • num_workers:使用多进程加载的进程数,0代表不使用多进程
  • collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可
  • pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
  • drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃
from torch.utils.data import DataLoaderdataloader = DataLoader(dataset, batch_size=3, shuffle=True, num_workers=0, drop_last=False)
dataiter = iter(dataloader)
imgs, labels = next(dataiter)
imgs.size()       # bach_size, channel, height, weight
torch.Size([3, 3, 224, 224])

dataloader是一个可迭代的对象,意味着我们可以像使用迭代器一样使用它,例如:

for batch_datas, batch_labels in dataloader:train()

dataiter = iter(dataloader)
batch_datas, batch_labesl = next(dataiter)

在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在__getitem__函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader中实现自定义的collate_fn,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch数目会少于batch_size。

class NewDogCat(DogCat):     # 继承前面实现的DogCat数据集def __getitem__(self, index):try:# 调用父类的获取函数,即DogCat.__getitem__(self, index)return super(NewDogCat, self).__getitem__(index)except:return None, None
from torch.utils.data.dataloader import default_collate        # 导入默认的拼接方式def my_collate_fn(batch):batch = list(filter(lambda x:x[0] is not None, batch))     # 过滤为None的数据     if len(batch) == 0: return t.Tensor()return default_collate(batch)
dataset = NewDogCat('data/dogcat_wrong/', transform=transform)
dataset[5]
(tensor([[[ 0.9020,  1.3333,  2.0000,  ..., -1.0196, -1.0784, -1.1176],[ 0.9608,  1.4314,  2.0196,  ..., -0.9804, -1.0588, -1.1176],[ 1.0196,  1.5294,  2.0588,  ..., -1.0000, -1.0588, -1.1176],...,[-0.2745, -0.1569,  0.1373,  ...,  0.7843,  0.7451,  0.7059],[-0.3333, -0.1765,  0.2745,  ...,  0.7255,  0.7059,  0.6667],[-0.4706, -0.2353,  0.3137,  ...,  0.7255,  0.7255,  0.6863]],[[ 0.8235,  1.2549,  1.8824,  ..., -0.4510, -0.4510, -0.4314],[ 0.7059,  1.1176,  1.8235,  ..., -0.4510, -0.4510, -0.4706],[ 0.6863,  1.1176,  1.8235,  ..., -0.4706, -0.4706, -0.4706],...,[-0.1961, -0.0588,  0.2549,  ...,  0.6471,  0.6667,  0.6471],[-0.2157, -0.0392,  0.3529,  ...,  0.6667,  0.6863,  0.6863],[-0.3333, -0.0980,  0.3725,  ...,  0.7059,  0.7451,  0.7647]],[[-0.3529,  0.0000,  0.7647,  ...,  0.1176,  0.1373,  0.1373],[-0.3333,  0.0588,  0.6863,  ...,  0.0392,  0.0392,  0.0392],[-0.2745,  0.1373,  0.6863,  ..., -0.0196,  0.0000,  0.0196],...,[-0.8039, -0.7647, -0.4902,  ..., -0.2353, -0.1961, -0.2157],[-1.0588, -0.9608, -0.6078,  ..., -0.2549, -0.1765, -0.2157],[-1.2941, -1.1569, -0.7059,  ..., -0.2353, -0.1569, -0.1569]]]),0)
dataloader = DataLoader(dataset, 2, collate_fn=my_collate_fn, num_workers=0,shuffle=True)
for batch_datas, batch_labels in dataloader:print(batch_datas.size(),batch_labels.size())
torch.Size([2, 3, 224, 224]) torch.Size([2])
torch.Size([2, 3, 224, 224]) torch.Size([2])
torch.Size([1, 3, 224, 224]) torch.Size([1])
torch.Size([2, 3, 224, 224]) torch.Size([2])
torch.Size([1, 3, 224, 224]) torch.Size([1])

来看一下上述batch_size的大小。其中第2个的batch_size为1,这是因为有一张图片损坏,导致其无法正常返回。而最后1个的batch_size也为1,这是因为共有9张(包括损坏的文件)图片,无法整除2(batch_size),因此最后一个batch的数据会少于batch_szie,可通过指定drop_last=True来丢弃最后一个不足batch_size的batch。

对于诸如样本损坏或数据集加载异常等情况,还可以通过其它方式解决。例如但凡遇到异常情况,就随机取一张图片代替:

class NewDogCat(DogCat):def __getitem__(self, index):try:return super(NewDogCat, self).__getitem__(index)except:new_index = random.randint(0, len(self)-1)return self[new_index]

相比较丢弃异常图片而言,这种做法会更好一些,因为它能保证每个batch的数目仍是batch_size。但在大多数情况下,最好的方式还是对数据进行彻底清洗。

DataLoader里面并没有太多的魔法方法,它封装了Python的标准库multiprocessing,使其能够实现多进程加速。在此提几点关于Dataset和DataLoader使用方面的建议:

  1. 高负载的操作放在__getitem__中,如加载图片等。
  2. dataset中应尽量只包含只读对象,避免修改任何可变对象,利用多线程进行操作。

第一点是因为多进程会并行的调用__getitem__函数,将负载高的放在__getitem__函数中能够实现并行加速。
第二点是因为dataloader使用多进程加载,如果在Dataset实现中使用了可变对象,可能会有意想不到的冲突。在多线程/多进程中,修改一个可变对象,需要加锁,但是dataloader的设计使得其很难加锁(在实际使用中也应尽量避免锁的存在),因此最好避免在dataset中修改可变对象。例如下面就是一个不好的例子,在多进程处理中self.num可能与预期不符,这种问题不会报错,因此难以发现。如果一定要修改可变对象,建议使用Python标准库Queue中的相关数据结构。

class BadDataset(Dataset):def __init__(self):self.datas = range(100)self.num = 0 # 取数据的次数def __getitem__(self, index):self.num += 1return self.datas[index]

使用Python multiprocessing库的另一个问题是,在使用多进程时,如果主程序异常终止(比如用Ctrl+C强行退出),相应的数据加载进程可能无法正常退出。这时你可能会发现程序已经退出了,但GPU显存和内存依旧被占用着,或通过topps aux依旧能够看到已经退出的程序,这时就需要手动强行杀掉进程。建议使用如下命令:

ps x | grep <cmdline> | awk '{print $1}' | xargs kill
  • ps x:获取当前用户的所有进程
  • grep <cmdline>:找到已经停止的PyTorch程序的进程,例如你是通过python train.py启动的,那你就需要写grep 'python train.py'
  • awk '{print $1}':获取进程的pid
  • xargs kill:杀掉进程,根据需要可能要写成xargs kill -9强制杀掉进程

在执行这句命令之前,建议先打印确认一下是否会误杀其它进程

ps x | grep <cmdline> | ps x

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据。默认的是采用SequentialSampler,它会按顺序一个一个进行采样。这里介绍另外一个很有用的采样方法:
WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样。

构建WeightedRandomSampler时需提供两个参数:每个样本的权重weights、共选取的样本总数num_samples,以及一个可选参数replacement。权重越大的样本被选中的概率越大,待选取的样本数目一般小于全部的样本数目。replacement用于指定是否可以重复选取某一个样本,默认为True,即允许在一个epoch中重复采样某一个数据。如果设为False,则当某一类的样本被全部选取完,但其样本数目仍未达到num_samples时,sampler将不会再从该类中选择数据,此时可能导致weights参数失效。下面举例说明。

dataset = DogCat('data/dogcat/', transform=transform)# 狗的图片被取出的概率是猫的概率的两倍
# 两类图片被取出的概率与weight的绝对大小无关,只和比值有关
weights = [2 if label == 1 else 1 for data, label in dataset]
weights
[2, 2, 2, 2, 1, 1, 1, 1]
from torch.utils.data.sampler import WeightedRandomSampler
sampler = WeightedRandomSampler(weights,num_samples=9, replacement=True
)
dataloader = DataLoader(dataset,batch_size=3,sampler=sampler)for datas, labels in dataloader:print(labels.tolist())
[0, 1, 0]
[1, 1, 1]
[1, 1, 1]

  1. http://pytorch.org/docs/master/torchvision/datasets.html ↩︎ ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/218360.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp框架——初始化vue3项目(搭建ai项目第一步)

文章目录 ⭐前言&#x1f496; 小程序系列文章 ⭐uniapp创建项目&#x1f496; 初始化项目&#x1f496; uni实例生命周期&#x1f496; 组件生命周期&#x1f496; 页面调用&#x1f496; 页面通讯&#x1f496; 路由 ⭐搭建首页⭐form表单校验页面⭐总结⭐结束 ⭐前言 大家好…

以pycharm为例,生成Python项目所需要的依赖库/包文档:requirements.txt

平时我们在编写或者使用别人的Python项目时&#xff0c;往往会看到一个文档requirements.txt&#xff0c;该文档是描述一个Python项目中的第三方库的名称以及版本。本文介绍导出python当前项目依赖包requirements.txt的操作步骤。 方法一&#xff1a;如果每个项目有对应的虚拟…

【SpringBoot】配置文件

配置文件官网 1. 配置方式 application.propertiesapplication.yml / application.yaml 2. 自定义配置信息 将实体类中的本应该写死的信息写在属性配置文件中。 可以使用 Value("${键名}") 获取&#xff0c;也可以使用 ConfigurationProperties(prefix"前…

java SSM酒店客房管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM酒店客房管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代 码和数据库&#xff0c;系统主要采…

LAMP平台——构建PHP运行环境

在构建LAMP平台时&#xff0c;各组件的安装顺序依次为Linux、Apache、MySQL、PHP。其中Apache和 MySQL的安装并没有严格的顺序&#xff1b;而PHP环境的安装一般放到最后&#xff0c;负责沟通Web服务器和数据库 系统以协同工作。 PHP 即 Hypertext Preprocessor&#xff08;超级…

python 爬虫 m3u8 视频文件 加密解密 整合mp4

文章目录 一、完整代码二、视频分析1. 认识m3u8文件2. 获取密钥&#xff0c;构建解密器3. 下载ts文件4. 合并ts文件为mp4 三、总结 一、完整代码 完整代码如下&#xff1a; import requests from multiprocessing import Pool import re import os from tqdm import tqdm fro…

深度探索Linux操作系统 —— 构建根文件系统

系列文章目录 深度探索Linux操作系统 —— 编译过程分析 深度探索Linux操作系统 —— 构建工具链 深度探索Linux操作系统 —— 构建内核 深度探索Linux操作系统 —— 构建initramfs 深度探索Linux操作系统 —— 从内核空间到用户空间 深度探索Linux操作系统 —— 构建根文件系统…

媒体直播平台有哪些,活动直播如何扩大曝光?

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 媒体直播平台包括人民视频、新华社现场云、中国网、新浪新闻直播、搜狐视频直播、凤凰新闻直播、腾讯新闻直播等。活动直播想要扩大曝光&#xff0c;可以考虑以下方式&#xff1a; 1.选择…

海思平台isp之ccm标定

文章目录 1、raw图采集2、ccm标定2.1、标定参数配置2.2、标定效果优化2.2.1、优化方式一2.2.2、优化方式二2.2.3、优化方式三1、raw图采集 raw图采集步骤及标准,请参考文章 《海思平台isp之ccm标定》。2、ccm标定 2.1、标定参数配置 (1)图像基本参数 (2)黑电平设置 (…

spring boot 实现直播聊天室

spring boot 实现直播聊天室 技术方案: spring bootwebsocketrabbitmq 使用 rabbitmq 提高系统吞吐量 引入依赖 <dependencies><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.42&…

十六、YARN和MapReduce配置

1、部署前提 &#xff08;1&#xff09;配置前提 已经配置好Hadoop集群。 配置内容&#xff1a; &#xff08;2&#xff09;部署说明 &#xff08;3&#xff09;集群规划 2、修改配置文件 MapReduce &#xff08;1&#xff09;修改mapred-env.sh配置文件 export JAVA_HOM…

从零开始:前端架构师的基础建设和架构设计之路

文章目录 一、引言二、前端架构师的职责三、基础建设四、架构设计思想五、总结《前端架构师&#xff1a;基础建设与架构设计思想》编辑推荐内容简介作者简介目录获取方式 一、引言 在现代软件开发中&#xff0c;前端开发已经成为了一个不可或缺的部分。随着互联网的普及和移动…

智能科技企业网站搭建的作用是什么

随着科学技术快速提升&#xff0c;各种智能产品随之而来&#xff0c;每个赛道里都涌入了大量企业商家&#xff0c;有些热门产品更是广受关注&#xff0c;对企业来说&#xff0c;形象、品牌、信息等方面需要完美呈现到用户眼前&#xff0c;而网站无疑是很好的工具。 企业通过【…

打开软木塞,我们来谈谈葡萄酒泡泡吧

香槟是任何庆祝场合的最佳搭配。从婚礼和生日到单身派对和典型的周五晚上&#xff0c;这款气泡饮料是生活中特别聚会的受欢迎伴侣。 来自云仓酒庄品牌雷盛红酒分享你知道吗&#xff0c;你喜欢喝的那瓶香槟酒可能根本不是香槟&#xff0c;而是汽酒&#xff1f;你不是唯一一个认…

造型精致的冰精灵充电头,充电效率高安全可靠,居家出行皆可用

随着大家对手机的依赖度越来越高&#xff0c;快速充电已经成为必不可少的需求。快充当然少不了支持快充的充电器&#xff0c;现在市面上的快充头很多&#xff0c;安全性和便携性是我们选择时的重点关注方向&#xff0c;我目前用的是战飞ZEFi冰精灵&#xff0c;这款产品有着独特…

【LeetCode刷题】-- 161.相隔为1的编辑距离

161.相隔为1的编辑距离 方法&#xff1a;一次遍历 首先&#xff0c;我们要确认字符串的长度不会相差太远。如果长度差了2个或更多字符&#xff0c;那么 s 和 t 就不可能是一次编辑之差的字符串。 接下来&#xff0c;我们假设 s 的长度总是短于或等于 t 的长度。如果不是这样&…

【C语言】结构体内存对齐

目录 引入结构体 结构的声明 创建和初始化 内部元素的使用&#xff1b; 特殊声明&#xff1a; 结构体在内存中的对齐 练习&#xff1a; 引入结构体 C语言有各种数据类型&#xff0c;我们已经对一些数据类型很熟悉&#xff1a; 整型&#xff08;int&#xff09;- 存储整…

MAC IDEA Maven Springboot

在mac中&#xff0c;使用idea进行maven项目构建 环境配置如何运行maven项目1.直接在IDEA中运行2.使用jar打包后执行 如何搭建spring boot1.添加依赖2.创建入口类3.创建控制器4. 运行5.其他 环境配置 官网安装IDEA使用IDEA的创建新项目选择创建MAEVEN项目测试IDEA的MAVEN路径是…

Mybatis-plus介绍与入门

前言 MyBatis-Plus是在MyBatis基础上的一个增强工具库&#xff0c;旨在简化开发者的工作&#xff0c;提高开发效率&#xff0c;同时保留MyBatis的灵活性。使用 MyBatis-Plus 可以减少重复性的代码&#xff0c;简化常见的数据库操作 官方学习文档&#xff1a;MyBatis-Plus (bao…

phpstudy是什么?

PHPStudy 是一个集成环境工具&#xff0c;它将 PHP 开发所需的软件&#xff0c;如 Apache&#xff08;Web服务器&#xff09;、MySQL&#xff08;数据库服务器&#xff09;、PHP&#xff08;脚本语言&#xff09;等打包在一起&#xff0c;以便用户能够轻松安装和配置这些软件&a…