现代雷达车载应用——第2章 汽车雷达系统原理 2.6节 雷达设计考虑

        经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。

2.6 雷达设计考虑

        上述部分给出了汽车雷达基本原理的简要概述。在雷达系统的设计中,有几个方面是必不可少的,它们决定了雷达系统的关键性能。在本节中,FMCW雷达将作为一个例子来讨论这些设计考虑。

2.6.1 灵敏度

        雷达的灵敏度定义了在特定PFA和PD下可以成功探测到的来自目标的最弱回波。在以上章节中,我们分别介绍了信号模型和噪声模型。有了这些模型,雷达系统设计者将能够在发展的早期阶段预测雷达的灵敏度。

        灵敏度的分析从雷达距离方程(2.21)开始。假设接收信道的总增益为Gs,其中包括放大器的增益、下变频混频器和基带放大器的损耗/增益。基带上的信号功率为

          (2.101)

        另一方面,由式(2.34)可知基带上的噪声功率为

          (2.102)

        因此,信噪比可以由下式获得

          (2.103)

        式中,Gsp为信号处理增益,Lsp为信号处理损耗。βn近似于ADC前抗混叠滤波器的BW。对于FMCW雷达来说,Gsp主要来自于“快时间”和“慢时间”的DFT。对距离-多普勒处理,信号处理总增益Gsp = N*M,其中N为“快时间”的DFT大小,M为“慢时间”的DFT大小,也分别称为距离和多普勒单元数。对于Lsp,其中一个原因是在DFT之前对数据加了窗函数。

        对于汽车雷达的设计,通常针对具体情况提供要求。例如,某汽车制造商需要前视雷达来支持其自动紧急制动功能,这就要求雷达在一定范围内检测到行人,且检测概率大于50% (PD > 0.5),虚警率PFA = 1 * 10 -4。行人通常被认为是一个Swerling I的目标。从表2.6中可以看出,在没有积累的情况下,实现PD = 0.5和PFA = 1 * 10 -4的Swerling I目标的最小信噪比是SNRmin = 10.89 dB。因此,最大探测距离为

          (2.104)

        雷达设计人员的主要任务之一是在(2.105)中的参数之间找到一个良好的平衡。kT0是常数,λ是由工作频率决定的,它也可以看作是一个常数。发射功率P t和噪声系数NF通常由雷达收发芯片决定,通常受到制造工艺的限制。Gt和Gr依赖于天线设计,还需要考虑最大天线增益和波束覆盖(天线波束宽度)之间的权衡。βn、Gsp和Lsp是与雷达波形设计和数字信号处理相关的参数。利用积累可以降低最小信噪比,从而提高最大探测距离。然而,集成也需要更多的处理。

2.6.2 距离/多普勒覆盖

        雷达的距离覆盖可以从(2.46)到(2.105)确定。由式(2.46)可知,当fp = fs,采用I/Q基带时,最大距离为:

          (2.105)

        这个最大范围是基于波形和采样率,而不考虑灵敏度。使用单通道基带(没有I/Q基带),最大范围减少了一半:

          (2.106)

         因此,雷达的实际距离覆盖应该为

           (2.107)

         或

           (2.108)

         对于单通道基带。

         对于多普勒覆盖,最大速度可以从式(2.79)计算当,ξp=M

           (2.109)

         Vmax也被称为最大无模糊速度,因为Vmax之外的速度被折叠到(速度)区间中。

2.6.3 距离/多普勒分辨率

        雷达的目标分辨率是它区分距离或多普勒非常近的目标的能力。对于FMCW雷达,目标的距离可以从(2.69)得到。距离分辨率ΔR是两个相邻距离单元之间的差:

          (2.110)

          (2.111)

        由于N/fs=T0,距离分辨率可以推导为

          (2.112)

        类似距离分辨率,多普勒(速度)分辨率ΔV能从(2.79)获得:

          (2.113)

          (2.114)

        值得注意的是,由式(2.112)和式(2.114)推导出的ΔR和ΔV是一种理想条件,包括相同大小、高信噪比、矩形窗口的点目标。在实际情况下,距离和多普勒分辨率会受到各种因素的影响。例如,如果目标的大小不同,则更难以区分较小的目标和较大的目标。另一个例子是,在距离-多普勒处理中可以使用某些窗函数来获得合理的副瓣电平,这通常会增加主瓣宽度,降低距离和多普勒分辨率[30]。

2.6.4 相位噪声

         一个完美的正弦波只能在教科书中找到。相位和频率的不稳定性在所有天然和人造振荡器中都是允许的。这些不稳定性被称为相位噪声。相位噪声与材料、结构设计以及振荡器中的随机噪声现象有关。图2.28(a)显示了一个普通振荡器的频谱,其中f0为中心或载波频率。相位噪声的功率随着频偏fa的增大而减小。频谱的相位噪声部分可以分为两部分,即近载波相位噪声和远载波相位噪声。对于汽车雷达,通常使用锁相环来合成波形。图2.28(b)显示了锁相环的典型频谱。在图2.28(b)中可以看到一个基座,这是由于基于锁相环的合成器具有有限环路BW,或者由于系统中使用的倍频器链的有限BW用于倍频。参考文献[31-33]详细分析了噪声基座在倍频作用下的行为。

图2.28 雷达信号源频谱(a)一般振荡器的频谱(b)包括噪声基座的合成信号发生器的频谱

        在雷达的接收信道中,混频器可以增加或消除接收信号中的相位噪声。相位噪声的消除发生在两个输入信号是相干的情况下,即两个输入信号之间具有确定的相位关系。在其他工作中,混频器的输入信号来自同一参考源。在汽车雷达系统中,混频器将发射信号与延时副本混合,产生如下相位噪声去相关[34,35]:

          (2.115)

        相位噪声去相关系数为,如(2.115)所示。可以看出,当δt = 0时,相位噪声可以完全消除。随着δt的增大,呈现周期性。

        为了更好地说明相位噪声对汽车雷达的影响,采用雷达收发器的相位噪声实测数据进行仿真。图2.29是测量到的相位噪声。从图中可以清楚地看到相位噪声基座。仿真的距离分布图如图2.30和2.31所示,目标位置分别为80 m和150 m。距离分布是128个chirp的平均值,以获得噪声底的形状。如(2.115)所示,相位噪声在距离分布中引入肩带。肩带随着目标距离的增加而升高,而去相关度随着δt的增加而增加。在汽车雷达应用中,更高的肩带意味着更小的动态范围。在这种情况下,可能无法检测到大目标旁边的小目标。例如,汽车前面的行人可能会被相位噪声肩带掩盖。因此,雷达信号发生器必须具有低相位噪声才能保持足够的动态范围

图2.29 雷达发射机测量到的相位噪声示例

图2.30 80m处目标的距离分布

图2.30 150m处目标的距离分布

2.6.5 Chirp非线性

        汽车雷达测距的另一个主要干扰是chirp非线性。理想的FMCW雷达具有完美的线性chirp,可以表示为

         f(t) = fc + Kt  (2.116)

         K是chirp的斜率。然而,实际信号合成器中总是存在频率偏差。图2.32显示了一个与理想线性chirp相比有轻微偏差的24 GHz chirp示例。

图2.32 一个非线性chirp

        基带频率和目标距离精度取决于频率斜坡中非线性的类型。因此,chirp非线性带来的影响应该逐个评估。例如,文献[36]中描述了具有正弦偏差的非线性频率斜坡的影响。在文献[37]中,评估了FMCW雷达中自由运行的压控振荡器的平方偏差。由于难以解析地确定chirp非线性的影响,雷达设计人员通常将测量和仿真相结合来分析chirp非线性的影响。现代先进的信号和频谱分析仪器,如Keysight 89,601BHPC和罗德与施瓦茨FSW信号和频谱分析仪,提供了直接测量瞬时波形频率关系的能力。因此,雷达设计人员可以利用雷达仿真中测量到的波形来评估非线性所造成的影响。

        对于图2.32中测量的波形,可以使用一般的连续波发射信号(2.13)从频率与时间的瞬态波形创建时域发射信号。根据感兴趣的距离,可以在(2.42)中应用一定的时间延迟来获得基带信号进行评估。仿真距离分布示例如图2.33所示,其中三个目标分别位于30、95和200 m处,RCS值不同。非线性的影响在图2.33中很明显,随着距离的增加,目标波束的宽度会变宽,这会降低距离识别和距离精度。信噪比在较长的距离也有更多的下降。因此,在汽车雷达设计中,有一个良好的线性chirp是至关重要的,以保持雷达的性能在整个距离覆盖。

图2.33 非线性chirp目标的距离分布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/218498.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【leetcode】链表总结

说明:本文内容来自于代码随想录 链表基本操作 https://leetcode.cn/problems/design-linked-list/ 删除节点 https://leetcode.cn/problems/remove-linked-list-elements/description/,删除节点,虚拟头节点。定义两个节点,分别…

基于QTreeWidget实现带Checkbox的多级组织结构选择树

基于QTreeWidget实现带Checkbox的多级组织结构选择树 采用基于QWidgetMingw实现的原生的组织结构树 通过QTreeWidget控件实现的带Checkbox多级组织结构树。 Qt相关系列文章: 一、Qt实现的聊天画面消息气泡 二、基于QTreeWidget实现多级组织结构 三、基于QTreeWidget…

eclipse连接mysql数据库(下载eclipse,下载安装mysql,下载mysql驱动)

前言: 使用版本:eclipse2017,mysql5.7.0,MySQL的jar建议使用最新的,可以避免警告! 1:下载安装:eclipse,mysql在我之前博客中有 http://t.csdnimg.cn/UW5fshttp://t.csdn…

2023年最详细的:本地Linux服务器安装宝塔面板,并内网穿透实现公网远程登录

📚📚 🏅我是默,一个在CSDN分享笔记的博主。📚📚 ​​ 🌟在这里,我要推荐给大家我的专栏《Linux》。🎯🎯 🚀无论你是编程小白,还是有一…

插头是什么

插头 电工电气百科 文章目录 插头前言一、插头是什么二、插头的类别三、插头的作用原理总结前言 插头的设计和结构会根据不同的国家和地区的标准和电源类型而有所不同。所以,在使用插头时,需要注意使用符合当地标准和规定的插头,以确保电气安全以及插入正确的电源插座 一、…

【lombok】从easyExcel read不到值到cglib @Accessors(chain = true)隐藏的大坑

背景: 在一次使用easyExcel.read 读取excel时,发现实体类字段没有值,在反复测试后,发现去掉Accessors(chain true)就正常了,为了验证原因,进行了一次代码跟踪 由于调用链路特别长,只列举出部分代码&#x…

动态规划习题

动态规划的核心思想是利用子问题的解来构建整个问题的解。为此&#xff0c;我们通常使用一个表格或数组来存储子问题的解&#xff0c;以便在需要时进行查找和使用。 1.最大字段和 #include <iostream> using namespace std; #define M 200000int main() {int n, a[M], d…

LCR 120. 寻找文件副本

解题思路&#xff1a; 利用增强for循环遍历documents&#xff0c;将遇见的id加入hmap中&#xff0c;如果id在hamp中存在&#xff0c;则直接返回id class Solution {public int findRepeatDocument(int[] documents) {Set<Integer> hmapnew HashSet<>();for(int d…

Python+Selenium UI自动化测试环境搭建及使用

一、什么是Selenium &#xff1f; Selenium 是一个浏览器自动化测试框架&#xff0c;它主要用于web应用程序的自动化测试&#xff0c;其主要特点如下&#xff1a;开源、免费&#xff1b;多平台、浏览器、多语言支持&#xff1b;对web页面有良好的支持&#xff1b;API简单灵活易…

【C++11特性篇】盘点C++11中三种简化声明的方式【auto】【decltype】【nullptr】(3)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.auto&#xff06;范围for二.decltyp…

Java医院3D人体智能导诊系统源码 Uniapp+springboot 微信小程序

“智能导诊”以人工智能手段为依托&#xff0c;为人们提供智能分诊、问病信息等服务&#xff0c;在一定程度上满足了人们自我健康管理、精准挂号等需求。智能导诊可根据描述的部位和病症&#xff0c;给出适合病症的科室参考。 智能导诊页面会显示男性或女性的身体结构图&#x…

Linux基本操作指令

哈喽小伙伴们&#xff0c;从这篇文章开始&#xff0c;在学习数据结构的同时&#xff0c;我们开启一个新的篇章——Linux操作系统的学习&#xff0c;这将会是又一个新的开始&#xff0c;希望小伙伴们能够认真细心&#xff0c;不要掉队哦。 目录 一.什么是Linux 二.为什么要学习…

LeetCode 300最长递增子序列 674最长连续递增序列 718最长重复子数组 | 代码随想录25期训练营day52

动态规划算法10 LeetCode 300 最长递增子序列 2023.12.15 题目链接代码随想录讲解[链接] int lengthOfLIS(vector<int>& nums) {//创建变量result存储最终答案,设默认值为1int result 1;//1确定dp数组&#xff0c;dp[i]表示以nums[i]为结尾的子数组的最长长度ve…

JNA实现JAVA调用C/C++动态库

1.JNA JNA全称Java Native Access&#xff0c;是一个建立在经典的JNI技术之上的Java开源框架&#xff08;https://github.com/twall/jna&#xff09;。JNA提供一组Java工具类用于在运行期动态访问系统本地库&#xff08;native library&#xff1a;如Window的dll&#xff09;而…

CSS学习笔记整理

CSS 即 层叠样式表/CSS样式表/级联样式表&#xff0c;也是标记语言&#xff0c; 用于设置HTML页面中的文本内容&#xff08;字体、大小、对齐方式等&#xff09;、图片的外形&#xff08;宽高、边框样式、边距&#xff09;以及版面的布局和外观显示样式 目录 准备工作 Chrome调…

时间序列预测 — CNN-LSTM实现多变量多步光伏预测(Tensorflow)

目录 1 数据处理 1.1 导入库文件 1.2 导入数据集 1.3 缺失值分析 2 构造训练数据 ​3 模型训练 3.1 CNN-LSTM网络 3.2 模型训练 4 模型预测 专栏链接&#xff1a;https://blog.csdn.net/qq_41921826/category_12495091.html 1 数据处理 1.1 导入库文件 import scip…

『番外篇二』Swift “黑魔法”之动态获取类实例隐藏属性的值

概览 在 Swift 代码的调试中,我们时常惊叹调试器的无所不能:对于大部分“黑盒”类实例的内容,调试器也都能探查的一清二楚。 想要自己在运行时也能轻松找到 Thread 实例“私有”属性的值吗(比如 seqNum)? 在本篇博文中您将学到如下内容: 概览1. 借我,借我,一双慧眼吧…

深入理解LightGBM

1. LightGBM简介 GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型&#xff0c;其主要思想是利用弱分类器&#xff08;决策树&#xff09;迭代训练以得到最优模型&#xff0c;该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛&#…

IT 人员与加密程序:如何战胜病毒

&#x1f510; 加密程序是攻击者在成功攻击组织时使用最多的恶意软件类型。它们通常会发送到一个庞大的电子邮件地址数据库&#xff0c;看起来像 Word 或 Excel 文档或 PDF 文件。 想象一下&#xff0c;你是会计部门的一名员工。这种格式的文件在电子文档管理系统中被广泛使用…

如何查看Linux中glibc的Version

用ldd --version ldd --version 运行libc.so 你没有看错&#xff0c;libc.so是一个可执行程序。 但前提是你要找到它。因为它并不在PATH所包含的目录下。 ppdell:~$ ldd which cat | grep libclibc.so.6 > /lib/x86_64-linux-gnu/libc.so.6 (0x00007f0e6fb34000)ppdell:~…