图论 之 迪斯科特拉算法求解最短路径

文章目录

  • 题目
    • 743.网络延迟时间
    • 3341.到达最后一个房间的最少时间I

求解最短路径的问题,分为使用BFS和使用迪斯科特拉算法,这两种算法求解的范围是有区别的

  • BFS适合求解,边的权值都是1的图中的最短路径的问题
    图论 之 BFS
  • 迪斯科特拉算法适合求解边的权值不一样的图,其中,该算法有两种实现方式,分别适用于两种情况的图
    • 稠密图,使用朴素的Dijkstra算法,其中稠密图的定义是,边的数量级与 o ( n 2 ) o(n^2) o(n2)相当的图,朴素的Dijkstra算法的时间复杂度是 o ( n 2 ) o(n^2) o(n2),其中n是图的节点的数量
    • 稀疏图,使用堆优化的Dijkstra算法,算法的时间复杂度是 o ( m l o g m ) o(mlogm) o(mlogm)其中,m是边的数量,如果输入的稠密图,那么使用堆优化的Dijkstra算法的时间复杂度是 o ( n 2 l o g n ) o(n^2logn) o(n2logn)

朴素的Dijkstras算法的模版

# 存储边的情况
edge = [[float('inf')]*n for n in range(n)]
# dis[i]表示 单源点k到其余节点i的最短的路径
dis = [float('inf')]*n 
dis[k] = 0
# 这个done[k] = True不用设置,后面会依据这个,把起点弹出
done = [False]*n # done[i]标记是否找到 到达节点i的最短的路径while True:x = -1for i,ok in enumerate(done):# 找到在还没确定最小距离的节点,该节点到源点的距离最小if not ok and (x < 0 or dis[i] < dis[x]):x = i# 判断是否都找到了if x < 0:# 这里就已经求解完成了,后续你可以返回最大值?return dis# 有节点无法到达if dis[x] == float('inf'):return -1# 设置标志位,表示节点x的最小距离已经确定done[x] = True# 遍历当前节点的所有的邻居,更新答案for j,d in enumerate(edge[x]):dis[j] = min(dis[j],dis[j]+d)

使用堆优化的Dijkstra算法


import heapqclass Solution:def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:# 使用堆优化的Dijkstra算法# 使用堆优化的话,适用于稀疏图,所以边的记录,我们使用邻接表edge = [[] for _ in range(n)]for x,y,z in times:edge[x-1].append((y-1,z))dis = [float('inf')]*n dis[k-1] = 0# 入堆的元素是 (dis[x],x),第一个元素是距离,这也是设置的优先级h = [(0,k-1)]while h:# 出堆dx,x = heapq.heappop(h)# 如果当前的距离大于最小距离,直接过if dx > dis[x]:# 说明之前出过堆continue# 访问邻居,不一定是这个邻接表或者邻接矩阵,二维表也可以for y,d in edge[x]:# 计算更新值,计算方式按照题目的意思new_dis = dx + d # 只有更优的值才能被加入进去if new_dis < dis[y]:dis[y] = new_disheapq.heappush(h,(new_dis,y))mx = max(dis)return mx if mx < float('inf') else -1

题目

743.网络延迟时间

743.网络延迟时间

在这里插入图片描述

在这里插入图片描述

思路分析:由于边的数量远远大于节点的数量,所以我们还是考虑使用稠密图下的朴素的Dijkstra算法,最后返回不是无穷的最大的路径即可

class Solution:def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:# 区别于BFS求解的最短距离,这个距离的边的权值不一样# 使用朴素的迪斯科特拉算法# 邻接矩阵记录边的情况edge = [[float('inf')]*(n) for _ in range(n)]# 有向边for e in times:edge[e[0]-1][e[1]-1] = e[2]dis = [float('inf')]*n # 记录k到各个节点的最短距离ans = dis[k-1] = 0done = [False] * n # 记录节点的最短距离是否被确定while True:x = -1# 找到最短距离还没确定,并且节点k到它的距离是最短的节点for i,ok in enumerate(done):if not ok and (x<0 or dis[i] < dis[x]):x = i # 如果x<0,表示全部的节点已经全部都访问过了if x < 0 :return ans# 如果最短的节点的距离是无穷,说明不可达if dis[x] == float('inf'):return -1# 更新ans = dis[x]done[x] = Truefor y,d in enumerate(edge[x]):dis[y] = min(dis[y],dis[x]+d)

使用堆优化的解法

import heapqclass Solution:def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:# 使用堆优化的Dijkstra算法# 使用堆优化的话,适用于稀疏图,所以边的记录,我们使用邻接表edge = [[] for _ in range(n)]for x,y,z in times:edge[x-1].append((y-1,z))dis = [float('inf')]*n dis[k-1] = 0# 入堆的元素是 (dis[x],x)h = [(0,k-1)]while h:dx,x = heapq.heappop(h)if dx > dis[x]:# 说明之前出过堆continuefor y,d in edge[x]:new_dis = dx + d if new_dis < dis[y]:dis[y] = new_disheapq.heappush(h,(new_dis,y))mx = max(dis)return mx if mx < float('inf') else -1

3341.到达最后一个房间的最少时间I

3341.到达最后一个房间的最少时间I

在这里插入图片描述

思路分析:开始的时候,我错误的以为题目中只能向右或者向下运动, 所以写了一个动态规划进行求解,实际上,这个思路是错误的,不过要是只能向下或者向右运动的话,动态规划也是一种很好的做法

# 动态规划的做法,竟然可以过700个测试用例
import heapq
class Solution:def minTimeToReach(self, moveTime: List[List[int]]) -> int:# 开始的时候从(0,0)出发,移动到相邻的房间,其实也只是向下或向右运动# 感觉可以用动态规划,dp[i][j]表示到达i,j所需的最少的时间# 递推公式,# dp[i][j] = min(max(dp[i-1][j],moveTime[i][j])+1,max(dp[i][j-1],moveTime[i][j])+1)n = len(moveTime)m = len(moveTime[0])dp = [[float('inf')]*(m+1) for _ in range(n+1)]dp[1][1] = 0for i in range(n):for j in range(m):if i == 0 and j == 0:continuedp[i+1][j+1] = min(max(dp[i][j+1],moveTime[i][j])+1,max(dp[i+1][j],moveTime[i][j])+1)for i in dp:print(i )return dp[n][m]

正确的思路:应该是使用Dijkstra算法,不过开始的时候,我有点纠结这个edge也就是边的矩阵如何转化为邻接矩阵或者邻接表,后面一想,还是我的固定思维阻碍了我,邻接矩阵和邻接表只是一个工具,帮助我们找到当前的节点的邻居,但是在现在的图中,你通过坐标的加减不就可以得到对应的邻居嘛!

  • 展示使用朴素Dijkstra算法做法
import heapq
class Solution:def minTimeToReach(self, moveTime: List[List[int]]) -> int:# 首先先使用 堆优化的Dijkstra进行解题# 图已经构建,就是moveTime# dis[i][j]表示(0,0)到(i,j)的最短的时间n,m = len(moveTime),len(moveTime[0])dis = [[float('inf')]*m for _ in range(n)]dis[0][0] = 0done = [[False]*m for _ in range(n)]while True:x,y = -1,-1# 开始遍历还没确定的点for i in range(n):for j in range(m):if not done[i][j] and ((x<0 and y <0) or dis[i][j] < dis[x][y]):x,y = i,jif x<0 and y <0:# 说明都找到了return dis[n-1][m-1]# 设置已经找到done[x][y] = True# 访问邻居for i,j in (x+1,y),(x-1,y),(x,y+1),(x,y-1):if 0<= i < n and 0<= j < m:dis[i][j] = min(max(dis[x][y],moveTime[i][j]) + 1,dis[i][j])
  • 展示使用堆优化的Dijkstra算法
import heapq
class Solution:def minTimeToReach(self, moveTime: List[List[int]]) -> int:# 首先先使用 堆优化的Dijkstra进行解题# 图已经构建,就是moveTime# dis[i][j]表示(0,0)到(i,j)的最短的时间n,m = len(moveTime),len(moveTime[0])dis = [[float('inf')]*m for _ in range(n)]dis[0][0] = 0h = [(0,0,0)]while True:d,x,y = heapq.heappop(h)if x == n-1 and y == m-1:return d # 已经更新过了if d > dis[x][y]:continue# 访问邻居:for i,j in (x+1,y),(x-1,y),(x,y+1),(x,y-1):if 0<= i <n and 0<= j < m:# 合法的坐标# 计算当前的距离,小于才入堆new_dis = max(d,moveTime[i][j])+1if dis[i][j]>new_dis:dis[i][j] = new_disheapq.heappush(h,(dis[i][j],i,j))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/21954.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker+Dify部署DeepSeek-r1本地知识库

安装配置Docker Desktop 软件下载 Docker Desktop版本:4.38.0.181591 Docker Desktop下载地址:Docker: Accelerated Container Application Development 或者从这里下载:DockerDesktop-4.38.0.181591资源-CSDN文库 点击图下所示位置,下载windows-AMD64版本软件 启用Hy…

ubuntu ffmpeg 安装踩坑

ffmpeg 安装踩坑 安装命令: sudo apt update sudo apt install ffmpeg如果以上命令没有报错&#xff0c;那么恭喜你很幸运&#xff0c;可以关闭这篇文章了&#xff01; 如果跟我一样&#xff0c;遇到如下报错&#xff0c;可以接着往下看&#xff1a; 报错信息&#xff1a; …

如何通过Windows环境远程控制MusicGPT在线生成高质量AI音乐

文章目录 前言1. 本地部署2. 使用方法介绍3. 内网穿透工具下载安装4. 配置公网地址5. 配置固定公网地址 前言 在这个快节奏的时代&#xff0c;音乐不仅是心灵的慰藉&#xff0c;更是创意的源泉。试想一下&#xff0c;在忙碌的工作间隙或悠闲的周末午后&#xff0c;只需轻敲几行…

大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(3)

Paimon的下载及安装&#xff0c;并且了解了主键表的引擎以及changelog-producer的含义参考&#xff1a; 大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1) 利用Paimon表做lookup join&#xff0c;集成mysql cdc等参考&#xff1a; 大数据组件(四)快速入门实时数据…

Spring面试题2

1、compareable和compactor区别 定义与包位置:Comparable是一个接口&#xff0c;位于java.lang包,需要类去实现接口&#xff1b;而Compactor是一个外部比较器&#xff0c;位于java.util包 用法&#xff1a;Comparable只需要实现int compareTo(T o) 方法&#xff0c;比较当前对…

react(9)-redux

使用CRA快速创建react项目 npx create-react-app react-redux 安装配套工具 npm i reduxjs/toolkit react-redux 启动项目 在创建项目时候会出现一个问题 You are running create-react-app 5.0.0, which is behind the latest release (5.0.1). We no longer support…

HTTP SSE 实现

参考&#xff1a; SSE协议 SSE技术详解&#xff1a;使用 HTTP 做服务端数据推送应用的技术 一句概扩 SSE可理解为&#xff1a;服务端和客户端建立连接之后双方均保持连接&#xff0c;但仅支持服务端向客户端推送数据。推送完毕之后关闭连接&#xff0c;无状态行。 下面是基于…

STL —— 洛谷字符串(string库)入门题(蓝桥杯题目训练)(二)

目录 一、B2121 最长最短单词 - 洛谷 算法代码&#xff1a; 代码分析 变量定义 输入处理 单词长度计算 更新最长和最短单词的长度 输出最长单词 输出最短单词 评测记录&#xff1a;​编辑 二、B2122 单词翻转 - 洛谷 算法代码&#xff1a; 代码分析 引入头文件和定…

74. 搜索二维矩阵(LeetCode 热题 100)

题目来源; 74. 搜索二维矩阵 - 力扣&#xff08;LeetCode&#xff09; 题目内容&#xff1a; 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非严格递增顺序排列。 每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &am…

JUC并发—9.并发安全集合四

大纲 1.并发安全的数组列表CopyOnWriteArrayList 2.并发安全的链表队列ConcurrentLinkedQueue 3.并发编程中的阻塞队列概述 4.JUC的各种阻塞队列介绍 5.LinkedBlockingQueue的具体实现原理 6.基于两个队列实现的集群同步机制 4.JUC的各种阻塞队列介绍 (1)基于数组的阻塞…

SQL Server导出和导入可选的数据库表和数据,以sql脚本形式

一、导出 1. 打开SQL Server Management Studio&#xff0c;在需要导出表的数据库上单击右键 → 任务 → 生成脚本 2. 在生成脚本的窗口中单击进入下一步 3. 如果只需要导出部分表&#xff0c;则选择第二项**“选择具体的数据库对象(Select specific database objects)”**&am…

DDoCT:形态保持的双域联合优化用于快速稀疏视角低剂量CT成像|文献速递-医学影像人工智能进展

Title 题目 DDoCT: Morphology preserved dual-domain joint optimization for fast sparse-view low-dose CT imaging DDoCT&#xff1a;形态保持的双域联合优化用于快速稀疏视角低剂量CT成像 01 文献速递介绍 计算机断层扫描&#xff08;CT&#xff09;是当今广泛应用的…

【Linux】多线程 -> 线程同步与基于BlockingQueue的生产者消费者模型

线程同步 条件变量 当一个线程互斥地访问某个变量时&#xff0c;它可能发现在其它线程改变状态之前&#xff0c;它什么也做不了。 例如&#xff1a;一个线程访问队列时&#xff0c;发现队列为空&#xff0c;它只能等待&#xff0c;直到其它线程将一个节点添加到队列中。这…

WPF的页面设计和实用功能实现

目录 一、TextBlock和TextBox 1. 在TextBlock中实时显示当前时间 二、ListView 1.ListView显示数据 三、ComboBox 1. ComboBox和CheckBox组合实现下拉框多选 四、Button 1. 设计Button按钮的边框为圆角&#xff0c;并对指针悬停时的颜色进行设置 一、TextBlock和TextBox…

Ubuntu24.04LTS的下载安装超细图文教程(VMware虚拟机及正常安装)

&#x1f638;个人主页&#x1f449;&#xff1a;神兽汤姆猫 &#x1f4d6;系列专栏&#xff1a;开发语言环境配置 、 Java学习 、Java面试 、Markdown等 学习上的每一次进步&#xff0c;均来自于平时的努力与坚持。 &#x1f495;如果此篇文章对您有帮助的话&#xff0c;请点…

buu-get_started_3dsctf_2016-好久不见39

栈溢出外平栈 1外平栈与内平栈的区别 外平栈&#xff1a; 栈帧的局部变量和返回地址之间没有额外的对齐或填充。返回地址直接位于局部变量的上方&#xff08;即栈顶方向&#xff09;。在计算偏移时&#xff0c;不需要额外加 4&#xff08;因为返回地址紧邻局部变量&#xff09…

QML Component 与 Loader 结合动态加载组件

在实际项目中&#xff0c;有时候我们写好一个组件&#xff0c;但不是立即加载出来&#xff0c;而是触发某些条件后才动态的加载显示出来&#xff0c;当处理完某些操作后&#xff0c;再次将其关闭掉&#xff1b; 这样的需求&#xff0c;可以使用 Component 包裹着组件&#xff…

vim修改只读文件

现象 解决方案 对于有root权限的用户&#xff0c;在命令行输入 :wq! 即可强制保存退出

UML顺序图的建模方法及应用示例

《UML 2.5基础、建模与设计实践》(李波&#xff0c;姚丽丽&#xff0c;朱慧)【摘要 书评 试读】- 京东图书 顺序图是强调消息时间顺序的交互图&#xff0c;它描述了对象之间传送消息的时间顺序&#xff0c;用于表示用例中的行为顺序。顺序图将交互关系表示为一个二维图&#x…

docker 安装jenkins

使用docker 容器安装jenkins比较方便&#xff0c;但是细节比较重要&#xff0c;这里实战安装了一遍&#xff0c;可用&#xff1a; 拉取最新的jenkins镜像 docker pull jenkins/jenkins 如果没有翻墙的话&#xff0c;可以会有下面的报错&#xff1a; Error response from dae…