【贪心算法】【中位贪心】LeetCode:100123.执行操作使频率分数最大

涉及知识点

双指针
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
贪心算法

题目

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。
你可以对数组执行 至多 k 次操作:
从数组中选择一个下标 i ,将 nums[i] 增加 或者 减少 1 。
最终数组的频率分数定义为数组中众数的 频率 。
请你返回你可以得到的 最大 频率分数。
众数指的是数组中出现次数最多的数。一个元素的频率指的是数组中这个元素的出现次数。
示例 1:
输入:nums = [1,2,6,4], k = 3
输出:3
解释:我们可以对数组执行以下操作:

  • 选择 i = 0 ,将 nums[0] 增加 1 。得到数组 [2,2,6,4] 。
  • 选择 i = 3 ,将 nums[3] 减少 1 ,得到数组 [2,2,6,3] 。
  • 选择 i = 3 ,将 nums[3] 减少 1 ,得到数组 [2,2,6,2] 。
    元素 2 是最终数组中的众数,出现了 3 次,所以频率分数为 3 。
    3 是所有可行方案里的最大频率分数。
    示例 2:
    输入:nums = [1,4,4,2,4], k = 0
    输出:3
    解释:我们无法执行任何操作,所以得到的频率分数是原数组中众数的频率 3 。
    参数范围
    1 <= nums.length <= 105
    1 <= nums[i] <= 109
    0 <= k <= 1014

贪心算法(中位数贪心)

假定众数是x,假定nums的长度为n,将nums按升序排序。

x一定是nums中的数

我们用反证发证明。

x < nums[0]所有数先降到nums[0],再由nums[0]降到x,不如直接降到nums[0]
x > nums[n-1]所有数先升到nums[n-1],再升到x,不如只升到nums[n-1]
x在nums[i]和nums[j]之间,nums中比x小的a个数,比x大的b个数。如果a>=b,x–,可以节省a-b个操作,直到x等于nums[i];否则x++,直到x等于nums[j]。

改变的数一定是一个子数组

假定改变的数是两个子数组[i1,i2]和[i3,i4]。如果x在[i1,i2]之间,则将i4替换成i2+1,直到两个子数组挨着一起合并。如果x在[i3,i4]之间,则i1替换i3-1,直到两个子数组挨着一起合并。

x只需要考虑中位数(中位数贪心算法)

来证明贪心算法的正确性。假定x是nums[i],x前面的数a个,x后面的数b个,i变成i-1操作次数变化:b-(a-1),如果表达式大于等于0,则没必要左移。b -a+1 >= 0,即a <=b+1。同理b <=a+1。即abs(a-b)<=1,则没必要左移和右移。
即:
如果n为偶数,中间任意一个。
如果n为奇数,中间的那个。

代码

核心代码

class Solution {
public:int maxFrequencyScore(vector<int>& nums, long long k) {m_c = nums.size();sort(nums.begin(), nums.end());vector<long long> vPreSum = { 0 };for (const auto& n : nums){vPreSum.emplace_back(n+vPreSum.back());}	int iRet = 0;for (int left = 0, right = 0; left < m_c; left++){while (right <= m_c){const long long mid = left + (right - left) / 2;const long long llLessNeed = (mid - left) * nums[mid] - (vPreSum[mid] - vPreSum[left]);const long long llEqualMoreNeed = (vPreSum[right] - vPreSum[mid]) - nums[mid] * (right - mid);if (llLessNeed + llEqualMoreNeed <= k){iRet = max(iRet, right - left);right++;}else{break;}}			}return iRet;}int m_c;
};

测试用例

void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}
}int main()
{Solution slu;vector<int> nums;int k;{Solution slu;nums = { 1,4,4,2,4 }, k = 0;auto res = slu.maxFrequencyScore(nums, k);Assert(3, res);}{Solution slu;nums = { 16, 2, 6, 20, 2, 18, 16, 8, 15, 19, 22, 29, 24, 2, 26, 19 }, k = 40;auto res = slu.maxFrequencyScore(nums, k);Assert(11, res);}{Solution slu;nums = { 1, 2, 6, 4 }, k = 3;auto res = slu.maxFrequencyScore(nums, k);Assert(3, res);}//CConsole::Out(res);
}

错误解法:二分查找+双指针

错误原因: 随着left增加targge可能减少
class Solution {
public:
int maxFrequencyScore(vector& nums, long long k) {
m_c = nums.size();
sort(nums.begin(), nums.end());
vector vPreSum = { 0 };
for (const auto& n : nums)
{
vPreSum.emplace_back(n+vPreSum.back());
}
long long llLeftSum = 0;//nums[left,target)的和,nums升序
int iRet = 0;
for (int left = 0, target = 0; left < m_c; left++)
{
while ((target < m_c) && (nums[target]*(target-left)- llLeftSum <= k))
{
const int right = BF(vPreSum,nums, target, k - (nums[target] * (target - left) - llLeftSum));
iRet = max(iRet, right - left);
llLeftSum += nums[target];
target++;
}
llLeftSum -= nums[left];
}
return iRet;
}
int BF(const vector& vPreSum,const vector& nums, int index,long long canUse)
{
int left = index, right = vPreSum.size();
while (right - left > 1)
{
const int mid = left + (right- left)/2 ;
if ((vPreSum[mid] - vPreSum[index]- nums[index] * (mid - index)) <= canUse)
{
left = mid;
}
else
{
right = mid;
}
}
return left;
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/219773.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络编程day2作业

1.tcp实现通信 服务器&#xff1a; //tcp服务端#include <head.h>#define SERPORT 8888 #define IP "192.168.125.6"int main(int argc, const char *argv[]) { //1.创建套接字int sfdsocket(AF_INET,SOCK_STREAM,0);//2.绑定struct sockaddr_in ser;ser.sin…

喜报丨迪捷软件入选2023年浙江省信息技术应用创新典型案例

12月6日&#xff0c;浙江省经信厅公示了2023年浙江省信息技术应用创新典型案例入围名单。本次案例征集活动&#xff0c;由浙江省经信厅、省密码管理局、工业和信息化部网络安全产业发展中心联合组织开展&#xff0c;共遴选出24个优秀典型解决方案&#xff0c;迪捷软件“基于全数…

LeetCode刷题--- 找出所有子集的异或总和再求和

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 http://t.csdnimg.cn/6AbpV 数据结构与算法 http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述递归递归、搜…

互联网加竞赛 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于python 机器视觉 的车牌识别系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;3分 &#x1f9ff; 更多资…

猫头虎博主揭秘:令人叹为观止的编程语言与代码技巧 ‍

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

python如何发送企业微信群消息

一、创建机器人&#xff0c;并获取webhook 1.1 进入企业微信中&#xff0c;添加群机器人&#xff0c;添加完成后可以获取到一个webhook的地址 1.2 群机器人企业微信接口的调用可以参考这个文件 https://developer.work.weixin.qq.com/document/path/99110#%E5%A6%82%E4%BD%…

C语言:求和1+1/2-1/3+1/4-1/5+……-1/99+1/100

#include<stdio.h> int main() {int i 0;double sum 0.0;int flag 1;for (i 1;i < 100;i){sum 1.0 / i * flag;flag -flag;}printf("sum%lf\n", sum);return 0; }

Centos7 配置Git

随笔记录 目录 1&#xff0c; 新建用户 2. 给用户设置密码相关操作 3. 为新用户添加sudo 权限 4. 配置Git 4.1 配置Git 4.2 查看id_ras.pub 5, 登录Git 配置SSH 秘钥 6. Centos7 登录Git 7. clone 指定branch到本地 8. 将新代码复制到指定路径 9. 上传指定代码 …

堆与二叉树(上)

本篇主要讲的是一些概念&#xff0c;推论和堆的实现&#xff08;核心在堆的实现这一块&#xff09; 涉及到的一些结论&#xff0c;证明放到最后&#xff0c;可以选择跳过&#xff0c;知识点过多&#xff0c;当复习一用差不多&#xff0c;如果是刚学这一块的&#xff0c;建议打…

微信小程序---自定义组件

目录 1.局部引用组件 2.全局引用组件 3.组件和页面的区别 4.自定义组件样式 5.properties属性 6.data和properties的区别 7.数据监听器 8.纯数据字段 9.自定义组件-组件的生命周期 lifetimes节点 10.组件所在的页面的生命周期 pageLifetimes节点 11.插槽 &#x…

安全算法(二):共享密钥加密、公开密钥加密、混合加密和迪菲-赫尔曼密钥交换

安全算法&#xff08;二&#xff09;&#xff1a;共享密钥加密、公开密钥加密、混合加密和迪菲-赫尔曼密钥交换 本章介绍了共享密钥加密、公开密钥加密&#xff0c;和两种加密方法混合使用的混合加密方法&#xff1b;最后介绍了迪菲-赫尔曼密钥交换。 加密数据的方法可以分为…

Transformer的学习

文章目录 Transformer1.了解Seq2Seq任务2.Transformer 整体架构3.Encoder的运作方式4.Decoder的运作方式5.AT 与 NAT6.Encoder 和 Decoder 之间的互动7.Training Transformer 1.了解Seq2Seq任务 NLP 的问题&#xff0c;都可以看做是 QA&#xff08;Question Answering&#x…

RFID工业识别系统的优势和价值

RFID是物联网感知层最重要的组成部分之一&#xff0c;它可以通过感知物品来实现智能化识别和管理&#xff0c;实现不同设备之间的互联。本文将深入探讨RFID工业识别系统的优势和价值&#xff0c;并探讨其实际应用的案例情况。 RFID工业识别系统的优势和价值 RFID作为物联网感知…

程序人生15年人生感悟

计算机程序员并不是一件什么高大上的职业。而仅仅是一份普通的工作。就像医生能治病救人&#xff0c;我们能治蓝屏救程序&#xff0c;我们都在为这个世界默默的做出自己的贡献。刻意或无意宣扬某个职业高大上&#xff0c;其实质是对其它行业从业者的不公平。但是有些人却常常这…

[计网02] 数据链路层 笔记 总结 详解

目录 数据链路层概述 主要功能 封装成帧 透明传输 差错检测 冗余码 差错控制 检错编码 纠错编码 奇偶效验法 CRC循环冗余码 静态分配信道 频分多路复用FDM 时分多路复用TDM 波分多路复用WDM 码分多路复用CDM 随机访问介质的访问控制 ALOHA CSMA CSMA/CD CSMA/…

Python 自动化之收发邮件(一)

imapclient / smtplib 收发邮件 文章目录 imapclient / smtplib 收发邮件前言一、基本内容二、发送邮件1.整体代码 三、获取邮件1.整体代码 总结 前言 简单给大家写个如何用Python进行发邮件和查看邮件教程&#xff0c;希望对各位有所帮助。 一、基本内容 本文主要分为两部分…

Temu、Shein、OZON测评自养号,IP和指纹浏览器的优缺点分析

随着全球电子商务的飞速发展&#xff0c;跨境电商环境展现出巨大的潜力和机遇。然而&#xff0c;跨境卖家们也面临着更激烈的竞争、更严格的规定和更高的运营成本等挑战。为了在这个环境中脱颖而出&#xff0c;一些卖家尝试使用自动脚本程序进行浏览和下单。然而&#xff0c;这…

JAVA基于物联网技术的智慧校园电子班牌原生微信小程序源码

智慧校园特色应用模块&#xff1a; 通知管理、视频管理、考勤管理、评价管理、图片管理、请假管理、家长留言、值日管理、成绩管理、离校管理、考场管理。 一、智慧校园是什么&#xff1f;如何定义&#xff1f; 智慧校园的定义&#xff1a;是指以物联网为核心的智慧化的校园学习…

【C 剑指offer】有序整型矩阵元素查找 {杨氏矩阵}

目录 题目内容&#xff1a; 思路&#xff1a; 图形演示&#xff1a; 复杂度分析 C源码&#xff1a; /** *************************************************************************** ******************** ********************* ******…

使用Log4j与log4j2配置mybatisplus打印sql日志

环境&#xff1a;项目非完全spring项目&#xff0c;没有spring的配置文件。执行sql时老是不打印sql语句。因此进行修改&#xff0c;过程比较坎坷&#xff0c;记录一下。 我尝试使用log4j和log4j2进行配置 最终把这两种全部配置记录上 Log4j配置 如果项目用的是log4j需要进行配置…